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ABSTRACT. The homology of semianalytic sets may be treated 
using chains which are themselves locally-finite integral combina­
tions of disjoint, oriented semianalytic submanifolds. The analytic 
image of a relatively compact semianalytic set, though not neces­
sarily semianalytic, admits a finite stratification into connected 
analytic submanifolds of various dimensions. 

A subset A of a (real) analytic manifold Mis called analytic (respectively, 
semianalytic) if M can be covered by open sets U for which there is a 
real-valued function ƒ (respectively, a finite family J^ of real-valued 
functions) analytic in U so that UnA equals/_1{0} (respectively, UC\A 
is a union of connected components of/-~1{0}~£"~1{0} for some/, g e 3F). 
A stratum in M is a connected (properly embedded) differentiable sub-
manifold of M. A stratification S? of a subset A of M is a locally finite 
partition of A into strata Sf so that (A nClos S)~S is a union of strata 
in SP having dimension less than the dimension of S. It is well known 
[9, §13], [7, 2.8] that every semianalytic set admits a stratification into 
semianalytic strata. 

Ay-dimensional analytic chain T in M is a sum of integral multiples of 
oriented /-dimensional semianalytic strata belonging to some fixed 
stratification of M. Since the restriction to these strata of/dimensional 
Hausdorff measure is locally-finite by [2, 3.4.8(13)], the analytic chain T 
is (by oriented integration, counting multiplicities, of differential j forms 
of compact support in M) a /-dimensional current in M. The set spt T, 
being the union of the closures of the strata occurring with nonzero 
multiplicity, is semianalytic. F o r y ^ l , the (y—1/dimensional current 
ar , defined by dT(y)=T(dy>) for y> e &~\M), is, by [2, 4.2.28], also an 
analytic chain in M. 

Suppose M^> A=>B. Using the group of real analytic cycles 2£$(A, 5)== 
{T.T is a /dimensional analytic chain of compact support, spt T<^A, 
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and spt dT^>B or y=0}, the subgroup of real analytic boundaries, 
^j(A,B)={R+dS:Re^j(B,B) and S e &j+1(A, A)}, and the real 
analytic homology group, HÔ(A, B)=^>

j(A, B^âS^A, B), we obtain in 
[6, 4.6-4.7] the following 

THEOREM 1. If A^>B are semianalytic sets, then there exists an arbi­
trarily small open neighborhood WofB such that H^A n W, B)~0for all]. 

COROLLARY 1. There exist arbitrarily small open neighborhoods U of 
A in M and V of B in U so that the inclusion of 2^0{A, B) into ££j(U, V) 
induces an isomorphism, HÓ{A, B^c^H^U, V),for allj. 

This allows us to define in [6, §5], by approximation, the homomor-
phism Hjifî'.HjiC, D^HjiA, B) for any continuous map ƒ: (C, Z>)-> 
(A,B) where C^D are semianalytic subsets of an analytic manifold; 
the axioms of Eilenberg-Steenrod follow as in [2, 4.4.1]. Also in [6, §6] 
a homology intersection product, for oriented M, 

H :HM, B) X H,(A9 B) - Hi+j_àimM(A, B) 

where j+/^dimAf, results by use of the intersection theory for real 
analytic chains of [4, §5]. The proofs of [6, §§2-6] all carry over for an 
analogous treatment of the homology of semialgebraic sets by real 
algebraic chains or for the homology with ZjvZ coefficients, where 
v e {2, 3 • • •}, of semianalytic sets by real analytic chains modulo v [5]. 

A. Borel and A. Haefliger, employing the Borel-Moore homology for 
locally-compact spaces proved the orientability modulo 2 of real analytic 
sets and established a formula equating the modulo 2 cycle of the real 
part of the intersection of two holomorphic varieties with the intersection 
of the modulo 2 cycles of the real parts of the varieties. These facts are 
reproven in [6, §§6, 8] using analytic chains and Federer's theory of slicing 
[2, 4.3], [4, §4]. The proof of Theorem 1 involves, for bounded semi-
analytic subsets of Rn, a certain stratification and system of neighborhoods 
built up from finitely many local normal decompositions of Lojasiewicz 
[9, §13]. We do not make use of the triangulability of semianalytic sets 
which is established in [3] and [8]. Other interesting aspects of semi-
analytic sets are treated in [1], [2, 3.4.5-3.4.11], [9], [10], [11, §4] and 
[12], [9] being the most informative. 

Even though semianalytic sets are closed under finite union, inter­
section, complement, cartesian product, and inverse image under analytic 
maps, the analytic image of even a compact analytic manifold may fail 
to be semianalytic [9, p. 135]. A subset C of M is called a semianalytic 
shadow if M can be covered by open sets U for which there is an analytic 
manifold P, an analytic mapping p:P-+M, and a finite family s/ of 
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relatively compact semianalytic subsets of P so that UnC is a union of 
connected components of p(A)~p(B) for some A, B e s/. 

THEOREM 2. For any locally finite family *% of semianalytic shadows 
in M, there is a stratification SfofM into semianalytic shadows so that 
each member of <% is a union of strata in £f. 

THEOREM 3. Tff:M->N is a proper analytic mapping, then 9* may be 
chosen so that {f(S):S e S?) extends to a stratification of N and f\S is 
one-one for all S e S? with dim/(S)=dim 5. 

The proofs of these statements in [7] involve certain semianalytic 
stratifications, the rank theorem, a cartesian product construction of 
[4, 2.8], and induction on the Hausdorff dimension of (J fé7. The strati­
fication Sf may also be refined to satisfy Whitney condition (B) [11, §3]. 
Statements similar to Theorem 2 and Corollary 2 are given without 
formal proof in [12, III B-C]. 

We have recently learned of the interesting work of H. Hironaka [13] 
and [14] on semianalytic shadows (which he calls subanalytic sets). 
Using his theory of resolution of singularities and blowing up techniques, 
he has [13] established Theorem 2. Because of differences in proofs as 
well as the discussions of [7, §2, §5], our article [7] may be of independent 
interest. 
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