
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 80, Number 3, May 1974 

COMPLETE CONVEX HYPERSURFACES 
OF A HILBERT SPACE 

BY RUBENS LEAO DE ANDRADE 

Communicated by S. S. Chern, February 18, 1973 

A complete convex hypersurface of a (separable) Hubert space H is a 
codimension one C00 submanifold of H, which is complete as a metric 
subspace of H and such that M= dK, where K is a (closed) convex set 
with nonvoid interior. For each p e M let v(p) be the unit normal vector 
which points to the interior of K. In this way we define the Gauss map 
v : M->£ from M into the unit sphere 2 of H. This is a C00 map and its 
derivative at each point p e M is selfadjoint. We say that M bounds a 
half-line if there exists a half-line {p-\-tv\ t^.0} contained in the interior 
of K. In the finite dimensional case the condition that M bounds a half-
line is equivalent to that M is unbounded. In the infinite dimensional 
case this is not true, as the following simple example shows. Let A be a 
compact positive definite selfadjoint operator in H and set M={x e H; 
(A(x), x) = l}. It is not difficult to prove that M is an unbounded posi
tively-curved convex hypersurface and that M does not bound any half-
line. 

In this note we announce some properties of a complete convex hyper
surface M of a Hubert space. Theorem A characterizes the three possible 
boundedness situations (bounded, unbounded and bounding a half-line, 
unbounded and bounding no half-line) in terms of the Gauss map of M. 
Theorem B gives a necessary and sufficient condition for M to be a pseudo-
graph (see definition below) over one of its tangent hyperplanes. Theorem 
C is the analogue of the Bonnet-Myers theorem for hypersurface of a 
Hilbert space. These results are part of my doctoral dissertation. I wish 
to thank my advisor Professor Manfredo do Carmo for suggesting these 
problems and for helpful conversations. 

THEOREM A. Let M be a complete convex hypersurface of a Hilbert 
space H. Then : 

(1) M is bounded iff the Gauss map r :M->3 is onto. 
(2) M is unbounded and bounds a half line iff the image of the Gauss map 

is contained in a hemisphere. 
(3) M is unbounded and does not bound any half line iff the image of 

the Gauss map is dense and has void interior. 
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Before stating Theorem B, we need to rephrase slightly the definition 
of pseudograph given in [2]. A convex hypersurface M is a pseudograph 
over the tangent hyperplane F when: 

(a) M lies in one of the closed half-spaces determined by F, 
(b) let 7T:M->F be the orthogonal projection and set A=IT(M). Then 

over the interior int A, M is the graph of a C00 function, 
(c) for every a e A—int A, M n ^ ^ a ) is a closed half-line, 
(d) for every hyperplane L above F, MC\L is bounded. 
In the case that M is finite dimensional, the above reduces to the 

definition given in [2]. 

THEOREM B. Let M be a complete convex hypersurface of a Hilbert 
space H. Then M is unbounded and ini(v(M))^ 0 iff M is a pseudograph 
over one of its tangent hyperplanes TM^M. 

THEOREM C (THE BONNET-MYERS THEOREM FOR HILBERT HYPER

SURFACE). Let M be a complete connected hypersurface of a Hilbert space 
H. If the sectional curvatures of M are all bounded away from zero (i.e. there 
exists a ô>0 such that for every p e M and every two-plane section #<= TMP 

one has Kia^d) then M is bounded, the diameter p of M satisfies 
P^TTJyJd and the Gauss map is a diffeomorphism. 

REMARK 1. Theorem B should be compared with a theorem of 
H. H. Wu [2]. It should be remarked that Wu also proved that if M is a 
complete convex hypersurface of Rn, then mt(v(M))=mt(v(M)). 

Theorem A shows that in the infinite dimensional case, this equality 
does not hold and we may have the extremal case in which int(y(M))= 0 
and int(V(M))=Il. This explains why we need the condition 'mt(y(M))?£ 0 
in Theorem B, in contrast with Wu's theorem, where no such condition 
is required. 

REMARK 2. The hypothesis of Theorem B is implied by the following 
condition on the sectional curvature of M (see [1]) : The sectional curva
tures of M are everywhere nonnegative and at some point p e M are all 
bounded away from zero. Thus in the finite dimensional case, Theorem B 
reduces to Wu's theorem. 
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