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Consider the ordinary differential operator L defined by 

(1) Ly = ƒ<»> + p^yw + .-.+Poy for y e Cn(I) 

where pt e 0(I) and I is any interval of the real line. 
For 1 ^k<n9 let Dk denote the class of operators Q of type 

Qy = y^ + q^-V + • - + q0y 

with qi G Cn~h{l) for / = 0 , • • • , k-l. 
By W(yl9 • • • , yk) we mean the Wronskian of the class C*""1 functions 

J i , " - ,ƒ*, i.e. W(yl9 • • • ,7*)=det[y} i"1)]. 
In [4] it was shown that a necessary and sufficient condition for a 

factorization L—RQ with i? e Dw_fc, g G Dk to hold is: 
There exist solutionsyl9 - • • ,ykof Ly=0 satisfying 

(2) W(yl9--9yk)*0 o n / . 

The factor Q has the form : 

(3) Qy = flXh, • • • » ^ y)l W(yl9--> yù for all yeC\ 

Here we announce a characterization of R*—the formal adjoint of the 
left factor JR. 

For a differential operator M denote by N(M) the set of all solutions 
y of My=0. 

Assume yl9 • • • , yk are in N(L) satisfying (2). Let yl9 • • • , yk9 • • • , yn 

be a basis of N(L). Define 

Zi = ^ ( j i , --,&,'•• ,yn)lW(yl9 - ' ,yn) fori = 1, • • • , n 

where the circumflex over y{ indicates that j t is missing and z denotes the 
conjugate of the complex number z. 

THEOREM. Suppose a factorization L=RQ with Q given by (3) holds. 
Then R is unique and 

(4) R*z= W(zk+19 .--9zn9 z)l W(zk+19 • • • , zn) for all z e C\ 
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Furthermore, given z e 7V(L*), [z, j j = 0 for all / = l , • • • , k if and only if 
z G N(R*) where [ , ] is the Lagrange bilinear form associated with L i.e. 

n i—1 

[u,V] = 2 2 (-I) ' (A<OW )"W-W ) 

for u,ve Cn(I). 

COROLLARY. Suppose n=2k. Then R* = Q if and only if Zj e N(Q) for 
allj=k+\, • • • ,n. 

The special case when L is formally selfadjoint and of order 2k reduces 
to the well-known result (see Heinz [2, Satz 3 and Zusatz p. 16], W. A. 
Coppell [1, Theorem 19, p. 80] and M. G. Krein [3]) that L=Ô*Ô with 
Q given by (3) if and only if there exist yl9 • • • , yk in N(L) which satisfy 
(2) and are pairwise conjugate, i.e. [yi9 J 5 ]=0 for all i,j=l9 • • • , k. 

Since much more information is available about lower order operators 
than higher order ones—particularly for orders 2, 3 and 4—it is expected 
that the factorization L=RQ will be useful by reducing the study of a 
problem to one of lower order. For example, we consider the study of 
disconjugacy. 

It follows directly from the Pólya factorization of disconjugate operators 
that L is disconjugate if both R and Q are. It is also known [1] that R 
is disconjugate if R* is. By applying Pólya's condition W to R* and Q 
we obtain a disconjugacy criterion for L: 

Functions vl9 • • • , vv from Cv~x are said to have property W (or 
form a Markov system in the terminology of [1]) if the p Wronskians 
W(vl9 • • • , vt) for z = l, • • • ,p are positive. 

The operator L is disconjugate if, for some k with l^k<n, there 
exist yl9 ' ' ' 9yk e N(L) such that yl9 • • • , yk and some reordering of 
**+i> ' * * » zn have property W. 

The proof is too long to be included here and will be published 
elsewhere together with some related results and applications and illus
trations. 
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