A CHARACTERIZATION OF THE FACTORS OF ORDINARY LINEAR DIFFERENTIAL OPERATORS

BY ANTON ZETTL

Communicated by Fred Brauer, October 8, 1973

Consider the ordinary differential operator L defined by

(1)
$$Ly = y^{(n)} + p_{n-1}y^{(n-1)} + \dots + p_0y$$
 for $y \in C^n(I)$

where $p_i \in C^i(I)$ and I is any interval of the real line.

For $1 \leq k < n$, let D_k denote the class of operators Q of type

$$Qy = y^{(k)} + q_{k-1}y^{(k-1)} + \dots + q_0y$$

with $q_i \in C^{n-k}(I)$ for $i=0, \cdots, k-1$.

By $W(y_1, \dots, y_k)$ we mean the Wronskian of the class C^{k-1} functions y_1, \dots, y_k , i.e. $W(y_1, \dots, y_k) = \det[y_j^{(i-1)}]$.

In [4] it was shown that a necessary and sufficient condition for a factorization L=RQ with $R \in D_{n-k}$, $Q \in D_k$ to hold is:

There exist solutions y_1, \dots, y_k of Ly=0 satisfying

(2)
$$W(y_1, \cdots, y_k) \neq 0$$
 on *I*.

The factor Q has the form:

(3)
$$Qy = W(y_1, \cdots, y_k, y) / W(y_1, \cdots, y_k) \text{ for all } y \in C^n.$$

Here we announce a characterization of R^* —the formal adjoint of the left factor R.

For a differential operator M denote by N(M) the set of all solutions y of My=0.

Assume y_1, \dots, y_k are in N(L) satisfying (2). Let $y_1, \dots, y_k, \dots, y_n$ be a basis of N(L). Define

$$\bar{z}_i = W(y_1, \cdots, \hat{y}_i, \cdots, y_n) / W(y_1, \cdots, y_n)$$
 for $i = 1, \cdots, n$

where the circumflex over y_i indicates that y_i is missing and \overline{z} denotes the conjugate of the complex number z.

THEOREM. Suppose a factorization L=RQ with Q given by (3) holds. Then R is unique and

(4)
$$R^*z = W(z_{k+1}, \cdots, z_n, z)/W(z_{k+1}, \cdots, z_n)$$
 for all $z \in C^n$.

AMS (MOS) subject classifications (1970). Primary 34A30, 34A05; Secondary 34A01.

Key words and phrases. Ordinary linear differential equations, factoring linear differential operators, Wronskians, Lagrange bilinear form, conjugate solutions, formal adjoint operator.

Copyright © American Mathematical Society 1974

Furthermore, given $z \in N(L^*)$, $[z, y_i]=0$ for all $i=1, \dots, k$ if and only if $z \in N(R^*)$ where [,] is the Lagrange bilinear form associated with L i.e.

$$[u, v] = \sum_{i=0}^{n} \sum_{j=0}^{i-1} (-1)^{j} (p_{i} \bar{v})^{(j)} u^{(i-1-j)}$$

for $u, v \in C^n(I)$.

COROLLARY. Suppose n=2k. Then $R^*=Q$ if and only if $z_j \in N(Q)$ for all $j=k+1, \cdots, n$.

The special case when L is formally selfadjoint and of order 2k reduces to the well-known result (see Heinz [2, Satz 3 and Zusatz p. 16], W. A. Coppell [1, Theorem 19, p. 80] and M. G. Krein [3]) that $L=Q^*Q$ with Q given by (3) if and only if there exist y_1, \dots, y_k in N(L) which satisfy (2) and are pairwise conjugate, i.e. $[y_i, y_j]=0$ for all $i, j=1, \dots, k$.

Since much more information is available about lower order operators than higher order ones—particularly for orders 2, 3 and 4—it is expected that the factorization L=RQ will be useful by reducing the study of a problem to one of lower order. For example, we consider the study of disconjugacy.

It follows directly from the Pólya factorization of disconjugate operators that L is disconjugate if both R and Q are. It is also known [1] that Ris disconjugate if R^* is. By applying Pólya's condition W to R^* and Qwe obtain a disconjugacy criterion for L:

Functions v_1, \dots, v_p from C^{p-1} are said to have property W (or form a Markov system in the terminology of [1]) if the p Wronskians $W(v_1, \dots, v_i)$ for $i=1, \dots, p$ are positive.

The operator L is disconjugate if, for some k with $1 \leq k < n$, there exist $y_1, \dots, y_k \in N(L)$ such that y_1, \dots, y_k and some reordering of z_{k+1}, \dots, z_n have property W.

The proof is too long to be included here and will be published elsewhere together with some related results and applications and illustrations.

REFERENCES

1. W. A. Coppell, *Disconjugacy*, Lecture Notes in Math., vol. 220, Springer-Verlag, Berlin and New York, 1971.

2. E. Heinz, Halbbeschränktheit gewöhnlicher Differentialoperatoren höherer Ordnung, Math. Ann. 135 (1958), 1–49. MR 21 #743.

3. M. G. Krein, Sur les operateurs differentiels auto-adjoints et leurs fonctions de Green symetriques, Mat. Sb. (N.S.) **2** (44) (1937), 1023–1072.

4. A. Zettl, Factorization of differential operators, Proc. Amer. Math. Soc. 27 (1971), 425-426. MR 42 #7966.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115