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ABSTRACT. This is an announcement of results to be proved in 
detail in a later report in book form. 

The author introduces a new value, the H-value, into differential 
games, and proves that six well-known values for games of perfect 
information now in the literature are special cases of it. He proves 
that two (in the present slightly altered formulation four) values 
introduced in 1972 by Elliott and Kalton using relaxed controls are 
equal to the mixed-strategy value introduced by Fleming, in 1964. 
Thus, of the twelve values just mentioned, there are only two which 
are essentially distinct: the new Q-value, and Fleming's 1964 value. 

Hamilton-Jacobi equations for the iQ-value and for the Fleming 
mixed-strategy value are announced as well. 

1. Introduction. We characterize a differential game of unit duration 
of purely terminal type by the following data : 

(i) C/and V9 compact topological spaces; 
(ii) f(x, t, u, v), a uniformly bounded vector-valued function continuous 

on Rpx [0, 1] x Ux F and uniformly Lipschitzian in x and /; 
(iii) cp(x), a uniformly bounded and uniformly Lipschitzian function 

defined throughout Rp. 
There are several methods already in the literature for attaching a 

value to this differential game. We begin by proposing a new one. 

2. The ti-value. Let O^or^l . We conceive of a as the proportionate 
reaction time for the maximizing player. Put tn=n/N, and tn=tn+ 
(l—a)IN9 n=0, • • • , N—l. At time t0 the maximizer chooses u0 s U. 
A predecessor v_1 is supposed given a priori at that time. Then, at time t%, 
the minimizer chooses v0 G V, and so on. Suppose that at time tn the 
position vector, having started at time t0 at a starting point x0, reaches xn. 
The maximizer now chooses un9 and the position vector, starting at 
x(tn)=xn, follows the differential equation 

(1) *(0 = f(*(0>M*».«V-i) 

on [tn, t%), reaching xn=x(t°) at time t%. The minimizer now chooses 
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vn9 and the position vector, starting at x' , follows the differential equation 

(2) i(r) = f (x(r), t, un9 vn) 

on [t°, tn+1), reaching xn+1=x(tn+1) at time tn+1. This process continues 
until time ^ = 1 is reached; the position vector is now at x(l). The payoff 
is then ç>(*(l)). Put 

(3) &N(a> v-i> xo) = Max Min • • • Max Min <p(x(l)). 
wo ^o UN-I VN-I 

This is the value of the N-stage Cl-game. 
In a book [1] currently being prepared for publication we have proved 

the following. 

CONVERGENCE THEOREM. î jV(<T> v-i> xo) converges uniformly in all 
its variables as JV->oo to a continuous limit î (o*, x0). 

The proof of this theorem is very long and involves delicate measure-
theoretical and probabilistic arguments. 

The simplest linear £l-problem. Consider the trivial case in which the 
control function f (u, v) does not involve x and t, the starting point is 
x0=0, and the payoff is (p(x)=a • x, a being a constant vector in Rp. We 
denote the value of this differential game by w(a9 a). Evidently 

(4) w(0, a) = Min Max a • f(u, v), w(l, a) = Max Min et • f(w, v). 
V U U V 

If 0<(T<1 the value satisfies vP(0, cî wCo*, a)^w(l, a), and the problem 
of finding the solution is in general much more complicated than it is for 
(T=0or 1. 

The Hamilton-Jacobi equation for the Q,-game. Let t e [0, 1). Denote 
by Q(t, a, x) the value of the fi-game starting at time t instead of at time 
0; in defining QN one divides [t, 1], instead of [0, 1], into N segments. 
By a 1919 theorem of Rademacher ([7]; a proof will be found in [6]), 
£}(/, cr, x), since it is Lipschitzian in t and x, has a total derivative almost 
everywhere in [0, l]xRp. Let (f, x) be a point of total differentiability. 
Put a=Va.ti(f, a, x), and f(w, ^)=f(x, f, t/, v). Then 

(5) £lt(t,a9x) = -w(cr, a), 

the subscript f denoting the partial derivative and w being defined as 
above. This is the Hamilton-Jacobi equation for the H-problem. It has not 
been proved before even for the case of the Fleming upper value (o*=0) or 
the Fleming lower value (cr=l), at least not for general Lipschitzian 
terminal v. 

3. Other values. We enumerate eleven important values already 
in the literature. 
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(i) The Fleming upper value. This is the same as £}(0, xQ), as follows 
from the definition. It was defined in [4]. We denote the TV-stage value by 
®A#(x0). Except for the very special case considered in [4], Fleming has 
not published an explicit proof of convergence. Elliott and Kalton knew 
how to prove it by the time they wrote [3], where however they attribute 
it to Fleming. They restrict N to powers of 2. Since 

O^+Oo) = Minv x 0^(0, v_u x0), 

this convergence in fact holds as JV—•oo through all values. 
(ii) The Fleming lower value. This is the same as 0 ( 1 , x0), and is denoted 

by <DA-(x0). 
The objective of the introduction of the O-value in the first place was 

to bridge the gap between Fleming's upper and lower values for the perfect 
information case. 

(iii) The Friedman upper value. Put tn=n/N, « = 0 , • • • , N— 1. Denote 
by Un the set of all Borel-measurable functions uw from [tn9 tn+1) to U, 
and define 33w={t)w} similarly. Suppose the position vector starts at time 
t0 at x0, and that it has reached xn by the time tn, n^N—1. The position 
vector, starting with x(tn)=xn, now follows the differential equation 

(6) at(0 = fW0^5uw(0,t)w(0) 
on [tn, tn+1), reaching a point xn+1=x(tn+1). At time 1 the position vector 
reaches a point x(l). Put 

(7) FÛ(x0) = Inf Sup • • • Inf Sup cp(x(l)). 

This is the Friedman upper value. Friedman gives a more complicated 
but equivalent definition on p. 11 of [6]. He proves in [6] that F^(x0) 
converges uniformly to a limit F+(x0) as N tends to oo through all values. 
We give another proof of this in [1]. 

(iv) The Friedman lower value. The same, except that it is 

Sup Inf • • • Sup Inf. 

(v) The Varaiya-Roxin upper value. Denote by U={u} the set of all 
Borel-measurable functions from [0, 1] to U; denote ©={t)} similarly. 
Let 
(8) a :33-^H 

be any function satisfying the "no-foreknowledge" condition that 

(9) t)(r) = t)'(r) a.e. on [0, t] => at)(r) = oa/(r) a.e. on [0, t]. 

Let x0 be a starting point and let u, t> be arbitrary in U, 93. Let x(l) be the 
point reached by following the differential equation 

(10) £(0 = f(*(0,',«('),»(')) 
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to time 1, starting at x(0)=x0. Put ®(x0, u, t>)=ç>(s(l)). The Varaiya-
Roxin upper value of the differential game is 

(11) VR+(x0) = Sup Inf 0(xo, at), t>). 
a © 

This was defined first in 1968 in [9] and extended in 1968 in [8]. It has 
the advantage of not needing convergence proofs. 

(vi) The Varaiya-Roxin lower value VRr*(x0) is defined similarly. 
(vii) The Fleming mixed-strategy value. This was defined by Fleming 

in 1964, in [5]. We shall define his TV-stage value here by backward 
induction; this is different from his definition but is equivalent. Let 
tn=n/N, n=0, • • • , N. Put <$ÀN(xN, tN)=(p(xN). Now suppose n^N—l 
and that OAjv(xn+1, tn+1) has already been defined throughout Rp. Denote 
by Xn+1(xn, un, vn) the point reached by starting at x(tn)=xn at time tn 

and following the differential equation 

(12) i ( 0 = f(1(0, U un9 vn) 

to time tn+1; thus Xn+1(xn, un, vn) = x(tn+1). Put 

(13) fn(xw, un9 vn) = mN(Xn+1(x 

For each xn this defines a continuous game over UxV. We denote the 
value of this game by <&hN(xn, tn). When we reach time t0=0 we put 
<!>ÀN(x0) = <&ÀN(x0, t0). This is the Fleming N-stage value of the differential 
game with mixed strategies. 

Fleming proved in [5] that <£>ÀN(x0) converges as 7V->oo through all 
values to a limit OA(x0), and that the convergence is uniform on bounded 
sets. He used deep techniques from the theory of parabolic differential 
equations and of probability. 

We give in [1] a new proof of Fleming's convergence theorem, not 
involving the parabolic equation. We also give a proof that the Hamilton-
Jacobi equation for this problem holds almost everywhere in [0, l]xRp. 
This result, for arbitrary uniformly Lipschitzian <p, is new. 

(viii) The Elliott-Kalton upper value. This is the Vi~2 defined in [3] 
just preceding Theorem 8.4. This time, on [tn, tn+1) the position vector 
follows the differential equation 

(14) i(t) = Jïf(*(0, U u, v) dSft(u) d&?(v), 

S$n and £in being "relaxed controls" on [tn, tn+1), i.e. functions from 
[tn, tn+1) into the spaces of probability measures on t /and F respectively, 
satisfying the condition of "scalar measurability" relative to t. Relaxed 
controls had been introduced into control theory by Warga; see his 
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book [10]. We put 

(15) EK&x0) = Inf Sup • • • Inf Sup <p(x(l)). 

This is the Elliott-Kalton N-stage value of the differential game. For 
technical reasons this definition is slightly different from that given in 
[3]; but it comes down to the same thing as N-^oo. Elliott and Kalton 
prove in [3] that EK^(x0) converges as 7V->oo through powers of 2 to a 
limit EK+(x0). We prove in [1] that this convergence holds as N-+co through 
all values. 

(ix) The Elliott-Kalton lower value is defined similarly. 
(x) The Varaiya-Roxin-Elliott-Kalton upper value. Denote by {$} and 

{Q} respectively the spaces of relaxed controls over [0,1] for the maximiz
ing and minimizing players. Denote by 3t: {Q}~>{^3} a function satisfying 
the "no-foreknowledge" condition analogous to that given for a at (8). 
With a slight abuse of notation, we denote by @(x0, ^3, Q) the value <p(x(l)) 
attained by a position vector starting at time 0 with -e(0)=0 and following 
the differential equation 

(16) i(t) = iï f(i(0, t,u,v) d%(u) d&t(v) 

to time 1. The quantity 

(17) VREK+(x0) = Sup Inf @(x0, 9IQ, Q) 

is the Varaiya-Roxin-Elliott-Kalton upper value of the differential game. 
It was defined, somewhat tacitly, in Theorem 11.2 in [3]. 

(xi) The Varaiya-Roxin-Elliott-Kalton lower value is defined similarly. 

4. Equality theorems. Elliot and Kalton proved in [3] that 

(18) G*-(*o) ^ F-(x0) ^ F+(xQ) ^ OA+(x0). 

The inside inequality is of course trivial. They also proved that 

(19) F~(x0) ^ ra-(xo), VR+(xo) ^ F+(*o)-

They did not suggest any relation between VRr{x0) and VR+(x0). Finally 
they proved that 

(20) VREK+(x0) = VREK-(xQ) = EK+(x0) = EK-(x0). 

We may now write simply VREK(x0), EK(x0). 
In [1] we have proved the following. 
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THEOREM. For the perfect information case, 

(21) OA+(x0) = F+(x0) = VR+(x0) = Q(0, 1), 

and similarly for the lower values. In particular, VR+(x0)'§iVR-'(x0). 

Elliott and Kalton have obtained the first two equalities independently, 
using parabolic partial differential equation theory; their paper will 
appear as [11]. 

THEOREM. For the "probabilistic" case 

(22) VREK(x0) = EK(x0) = OA(x0). 

The first equality in (22), as we noted above, was proved by Elliott and 
Kalton. 

Thus, there are only two values which are essentially distinct, the 1964 
Fleming value <I>A(x0) f ° r the mixed strategy case, and the new value 
Q,(a, x0). 

5. The Isaacs condition. In the sense usually understood, the Isaacs 
condition requires that 

(23) Max Min a • f(x, t, u, v) = Min Max a • f (x, t, u, v) 
U V V U 

for all vectors as RP and all pairs x, t. It is sometimes given another mean
ing by Elliott and Kalton in [3]; we adhere to (23). 

Fleming proved in [4] that if f is separable, i.e. if \{x, t, u9 v) = 
fi(x, t, u)+\z(x, t, v), then OA+(x0)=OA-(x0). Friedman proved in [6] 
under the same hypothesis that F+(x0)=F~(x0). Elliott and Kalton 
proved in [3] that if the Isaacs condition (23) is satisfied then F+(x0)= 
F~(x0). Under the further hypothesis that the terminal function y has 
Lipschitzian second partial derivatives, they proved that OA+(x0)=OA-(x0). 

Other than the Isaacs condition, the following theorem assumes only 
the hypotheses of §1. 

THEOREM. If the Isaacs condition (22) is satisfied, all the values we 
have mentioned are equal: for all a e [0, 1] 

Q(a, x0) = OA+(x0) = OA-(xo) = ^ (*o) = F-(x0) = VR+(x0) 

(23) = VR-(x0) = <DA(x0) = £K+(*o) = EK-(x0) 

= VREK+(x0) = VREK-(x0). 

There is a partial converse. Recall the definition of Cl(t, a, x) at the 
beginning of the discussion of the Hamilton-Jacobi equation in §2. 
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THEOREM. If £}(/, 0, x)=£l(t, 1, x) for all pairs (t, x), then (22) is 
satisfied almost everywhere in [0, 1] x Rp, with a=V£i(f, 0, x)=VQ,(t, 1, x). 

This follows trivially from the Hamilton-Jacobi equation (6). 

6. Generalizations. All the above existence and equality results 
generalize to the case when f is bounded, continuous in all its variables, 
and satisfies the weakened Lipschitz condition 

(24) |f(jc, t, u, v) - f(x', t, u, v)\ ^ k(t) \x - x'\, 

where ƒ J k(t) dt<oo, and the terminal function cp is replaced by a contin
uous functional O on the space X of trajectory functions x. These are the 
most general conditions envisaged by Friedman in [6] or by Elliott and 
Kalton in [3]. There is of course no longer any Hamilton-Jacobi equation, 
and the last theorem in §5 does not apply. 
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