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In this note, we use an algebraic construction of J. Tits [7], [8] to 
obtain results on the orbit structure of the exceptional hermitian sym­
metric spaces. These results complete the explicit analysis of the orbit 
structure of hermitian symmetric spaces that was given by J. A. Wolf 
[9, pp. 321-356] for the classical cases only. 

Part I is concerned with the space E7/E6 • SO (2). Part II will treat the 
other exceptional space, EJSO(10) • 50(2). Full details and complete 
proofs will appear in a longer article. 

1. J. Tits' construction of the complex Lie algebra (£7. Let sé be 
the algebra of 2 x 2 matrices with entries in C and let f be the 27-dimen-
sional Jordan algebra of hermitian 3 x 3 matrices whose entries are complex 
Cay ley numbers. Let s/0 and f^ be the subsets of srf and J consisting of 
matrices with zero trace. Also let Der(</) be the Lie algebra of derivations 
of f . Let {L(A)}(B)=A o B denote left multiplication by A in f, and 
let [a, b]=zab—ba for a, b e A. Now define a bilinear, anticommutative 
multiplication [ , ] on the complex vector space 

(1) 9 = ( ^o ® / ) + D e r ( / ) 

by means of the following rules: 
(a) [D, D'] is the usual commutator for D9 D' e Der(X). 
(b) [D, a®A]=a®D(A) for a e ^ i e / , and D e D e r ( / ) . 
(c) [a®A,b®B] = i[a9b]®AoB+%Tr(ab)[L(A),L(B)] for a,bes/0 

and A, Be/'. 
It is a theorem of J. Tits that g is the complex Lie algebra (£7. 
Let s/' be the set of matrices in se with real entries and se" the set 

of matrices in se of the form [_̂ * £•], where u9v e C and where the 
asterisks indicate complex conjugation. Let (f' be the set of matrices in 
$ whose entries are real Cayley numbers. If we substitute se' and f 
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for <sé and $ in the above construction, we obtain a noncompact real 
form g0 of g with Cartan index —25. If instead we substitute stf" and fl', 
then we obtain a compact real form gc of g. (These results are also due 
to Tits [7].) 

Set ï=ôon9c a nd Tno=Ôon/9c- Then g0=ï+rrt0 is a Cartan decompo­
sition of g0 with respect to the compact real form gc of g. 

REMARK. Those portions of the next three sections which do not 
refer to § 1 are true for irreducible hermitian symmetric spaces in general. 
The numbered theorems concern E7/Ee • 50(2) only. 

2. The exceptional space XC=E7/E6 • 50(2). Let X0 be the non-
compact dual of the exceptional hermitian symmetric space Xc of compact 
type. Write X0 as a coset space G0/K of real Lie groups, where G0 is the 
largest connected group of hermitian isometries of X0 and where K is the 
isotropy subgroup of G0 at some base point. Xc has a corresponding coset 
space description of the form GJK. Gc and K are compact; G0 is semi-
simple. According to É. Cartan's classification of irreducible hermitian 
symmetric spaces [2, p. 354], the Lie algebras of G0, Gc, and K are the 
algebras g0, gc, and ï constructed in §1. 

3. The almost complex structure of X0 and Xc. Let m be the com-
plexification of m0. There is an element z in the (one-dimensional) center 
of ï such that the restriction / of ad z to m satisfies J2=—I. (ƒ= identity 
map.) / is the almost complex structure of X0 and Xc. Define 

m+ = (+/)-eigenspace of J, m~ = (—/)-eigenspace of/. 

4. Realization of X0 as a bounded symmetric domain. Xc can be 
expressed as G/P, where G is the complexification of G0 and where 
K=G0nP. Then X0 has a natural embedding as an open G0-orbit on Xc. 
Moreover, the map £:m+->Xc defined by |(m)=(expm)P is a complex 
analytic diffeomorphism of m+ onto a dense open subset of Xc containing 
X0, and ü = f"1(Ar

0) is a bounded symmetric domain in m+. 
The domain £1 can now be described by means of a theorem of Lang-

lands [6, Lemma 2]. Let a denote conjugation of g relative to gc. For 
u G m+, define an endomorphism fu of m~ by 

fjp) = [["> <*u\> v] f o r v E m~-

(It is not hard to see that this is the same as the map used by Langlands.) 
Then the eigenvalues of fu for each u e m+ are nonnegative real numbers. 

LANGLANDS' THEOREM. Q={u e m+ ;fu < 21}. 

Here " /w<2/" means "all the eigenvalues of/w—2/are negative." 
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If we use the construction of g0 and gc in §1 to calculate the various 
objects defined above, we find that in the case XC=E7IE6 • SO(2), m+ 

and rrr are isomorphic to <ƒ*. If u e v^-=f has complex conjugate w*, 
then/M can be viewed as the endomorphism of fl defined by 

fu = 2{L(uoU*)- [L(u),L(u*)]}. 

Hence we obtain 

THEOREM 1. Q={u ef\L{u o u*)-[L(u)9 L(u*)]<l}. 

M. Koecher [5] and M. Ise [3], [4], working independently and using 
different methods, have also obtained descriptions of Q as a subset of (/. 
They "look" different; however: 

THEOREM 2. The three descriptions ofQ are identical as point sets. 

5. Some notational conventions. An arbitrary matrix in fl is of the 
form 

SI # 3 X% 

•^3 £2 ^1 > 

\_X2 Xi Ç3J 

where the ^ are complex numbers and the x{ are complex Cayley numbers. 
The bars denote Cayley conjugation. We will use the notation 

f A + l2£2 + | 3 £ 3 + ^i{*i) + F2{x2) + Fz{xz} 

to represent such a matrix. If c and d are nonnegative integers such that 
O^c+c/^27, let #{c9 d) denote the set of matrices u in ƒ such that 
fu has c eigenvalues < 2 and d eigenvalues > 2 (hence 21—c—d eigen­
values =2). By Langlands' theorem, 0 = / ( 2 7 , 0). 

Let A be the set of real diagonal matrices in J>. If a and b are non-
negative integers with 0^a+b^3, let A(a, b) denote the Ad(AfJ-orbit 
of the set of matrices u=r1E1+r2E2+r3E3 in A such that a of the numbers 
(ri)2> W 2 > (rs)2 a r e < 1 and b of them are > 1 . 

6. The Go-orbit structure of Xc. A close study of the eigenvalues 
offu for w e / , combined with some general theory in [9], leads to the 
following theorem. 

THEOREM 3. The pullbacks under £ of the G0-orbits on Xc are the sets 
A(a,b), where a and b are nonnegative integers such that 0^a+b^3. 
These sets can be described in terms of the eigenvalues offu9 « e / , as 
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follows: 

A(0, 0) = / ( O , 0), A(l, 0) = / ( 1 7 , 0), A(0, 1) = / ( O , 17), 

A(2, 0) = f (16, 0), A(0, 2) = / ( O , 26), 

A(l, 1) = f{\l, 9) U ƒ (9, 17) u / ( 9 , 9), 

A(3, 0) = ƒ (27, 0), A(0, 3) = ƒ (0, 27), 

A(2, 1) = / ( 2 6 , n U / ( 1 8 , 9) U ƒ (18, 1) U ƒ (10, 17) U Jf (10, 9) 

U / (10, 1), and 

A(l, 2) = / ( l , 26) U / ( 9 , 18) U / ( l , 18) U ƒ (17, 10) U / ( 9 , 10) 

U / ( l , 1 0 ) . 

Let S(a, b) denote the G0-orbit on Xc whose pullback under £ is A(a, b). 
Then 

(a) The open G0-orbits on Xc are 5(0, 3), 5(1, 2), 5(2, 1), and 5(3, 0 )= 
*. . 

(b) The G0-orbits on the topological boundary of X0 in Xc are S'(2, 0), 
S (I, 0), and S(0, 0). More generally, the boundary of a typical open orbit 
S(3—b,b) is the union of the orbits S(a\b') such that a+b'<3 and 
b'<:b<:3-a'. 

(c) 5(0, 0) is the Bergman-Silov boundary of X0 in Xc, the unique closed 
orbit. 

(d) S (a', b') is in the closure of S (a, b) if and only ifb'^b and a+b^ 
a'+b'. 

7. Holomorphic arc components. Let @={z eC:\z\<l}. If S is 
a subset of Xc, then a holomorphic arc in S is a holomorphic map 
ƒ : 2$-^Xc with image in S. A chain of holomorphic arcs in S is a finite 
sequence {fu • • • , fk} of holomorphic arcs in S such that Image(f) 
meets Image(^+1) for l^j^k— 1. Two points p, qeS are equivalent 
if there is a chain of holomorphic arcs {/i, • • • ,fk} in 5 with/? e I m a g e ^ ) 
and q e Image(fk). The equivalence classes are the holomorphic arc 
components of S in Xc. If S is open in Xc, then the holomorphic arc com­
ponents of the topological boundary of S are called the boundary com­
ponents of S. 

Some computations for the complex quadric 5O(10, 2)/SO(lO) X SO(2), 
along with some results from [9] and the eigenvalue analysis mentioned 
in §6, enable us to prove Theorem 4: 

THEOREM 4. Let a and b be nonnegative integers with 0^a+b^3. 
Then the holomorphic arc components of the G0-orbit S(a, b) are symmetric 
spaces of rank a+b whose pullbacks under | are the sets Ad (A:) • C(a, b), 
k G K, where the subset C(a, b) of ƒ is described for each choice o f a and 
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b as follows: 

C(0,0) = {~(E1 + E2 + Es)}, 

C(1,0) = {*EX-E2-EZ:\OL\ < 1}, 

C(0, l) = { o c £ 1 - J ? a - £ 8 : | a | > 1}, 

C(2, 0) = { 7 = a i £ x + a2£2 - £ 3 + FsW-.TrCr o 7*) 

< m i n ( 3 , 2 + |det 7|2)}, 

C(0, 2) = {7 = a ^ + oc2£2 - £ 3 + ^ W ^ < Tr(7o 7*) 

< 2 + |det 7|2}, 

C(l, 1) = {7 = a ^ + a2£2 - £ 3 + F8{fl8}:Tr(ro 7*) 

> 2 + |det 7|2}, 

C(a, 6) = A(a, è) w/zew a + b = 3. 

In particular, the boundary components ofX0 have pullbacks Ad(k) • C(a, 0), 
w/zere k E K and 0 ^ a ^ 2 . 
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