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0. The mainresults. This note is an announcement of the results below,
whose proofs will appear separately [7].

MAIN THEOREM. Let G be a linearly reductive affine linear algebraic
group over a field K of arbitrary characteristic acting K-rationally on a
regular Noetherian K-algebra S. Then the ring of invariants R=S% is
Cohen-Macaulay.

THEOREM. If S is a regular Noetherian ring of prime characteristic
p>0, and R is a pure subring of S (i.e. for every R-module M, M—M @5 S
is injective), e.g. if R is a direct summand of S as R-modules, then R is
Cohen-Macaulay.

The proofs utilize results of interest in their own right:

PropoSITION A. Let L be a field, y,,***,y, indeterminates over
L, S=L[yg,"**,Ym), and Y=Proj(S)=PZL. Let K be a subfield of L,
and let R be a finitely generated graded K-algebra with Ry=K. Let h: R—~S
be a K-homomorphism which multiplies degrees by d. Let P be the irrelevant
maximal ideal of R, and let X=Proj(R). Let U=Y—V(h(P)S). Let
@=h* be the induced K-morphism from the quasi-projective L-variety
U to the projective K-scheme X. Then ¢} :H!(X, 0 x)—~H (U, Oy) is zero
foriz1.

PROPOSITION A’. Let (R, P) be a local ring of prime characteristic
p>0 and let h be a homomorphism of R into a regular Noetherian domain
S. Suppose that for a certain i the local cohomology module Hp(R) has
finite length. Then if i7#0 or h(P)#0, the induced homomorphism Hp(R)—
Hps(S) is zero.

1. Applications and corollaries. We note that the Main Theorem
is stronger than the prior conjectures [2, §0] or [3, p. 56], where S was
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assumed to be a polynomial ring over K and the action was assumed to
preserve the grading. (This issue was first raised in [S] and [6].)

Second, we observe that the main result of [2] (wWhere G was GL(1, K)™),
and, in characteristic 0, the main results of [6], the roughly equivalent
papers [3], [10], [11] (dealing with the Cohen-Macaulay property for
Schubert varieties), and the thesis [9] all follow at once from the Main
Theorem here.

Third, we note that the Main Theorem implies that Serre-Grothendieck
duality will hold in a useful form (i.e. the pairing will be nonsingular:
cf. [1, pp. 5 and 6]) for many orbit spaces of actions of linearly reductive
groups on nonsingular varieties.

Fourth, we observe some ideal-theoretic corollaries. Let S=
[0, * * * » Ym)> @ polynomial ring, and let G act so as to preserve degrees.
Then R=S? will be generated over K by finitely many forms of S, and we
can write Re~K][z,,  * - , z;]/I. Here, we assume that z,, - * - , z, map to gen-
erating forms of R, and we grade T=XK]z,, * - * , z,] so that the K-homo-
morphism preserves degrees. Then I will be a homogeneous ideal of 7', and
is the solution to the ‘“‘second main problem of invariant theory” (cf. [14,
Chapter 1I, C]) for this particular representation. In this situation the
assertion that R (=~T/I) is Cohen-Macaulay is equivalent to the assertion
that I is perfect, i.e. pdp T/I=grade I. Let 4" be a graded T-free minimal
resolution of T/I. Then from the Main Theorem and, for example,
Theorem 3 and Corollary 1.2 of [4], we have

COROLLARY 1. With notation as above, so that S%~T, 1, the length
of X is g=grade I=height I, and A" is grade-sensitive. That is, if uy, * * * ,
u, are elements of a Noetherian K-algebra B, and we make B into a T-
algebra by means of the homomorphism h which takes z; to u;,, 05i<t,
then if J=h(I)B and E is any B-module of finite type such that JE#E, then
the grade of J on E is the number of vanishing homology groups, counting
from the left, of the complex A" ®y E. In particular, if the grade of J on E
is equal to g, then A" ®y E is acyclic.

COROLLARY 2. With notation as in Corollary 1, let E=B. Then every
minimal prime of J=h(I)B has height at most g, and if the grade of J is as
large as possible, i.e. g, then J is perfect (X Qp B is acyclic and gives
a resolution of length g) and hence all the associated primes of J have grade
g If J has grade g and B is Cohen-Macaulay, then the associated primes
of J all have height g and B|J is again Cohen-Macaulay.

We also note

COROLLARY 3. If K has characteristic 0 and G is semisimple and acts
on S=K[yg, *** , Y] S0 as to preserve the grading, then R=S% is a Cohen-
Macaulay UFD and, hence, Gorenstein.
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3. Remarks on the proof of the Main Theorem. When G is linearly
reductive there is an R-module retraction (the Reynolds operator) of S
onto R=S®. This fact is crucial in the proof of the Main Theorem.
The proof goes roughly like this: First, we reduce to the case where G
is connected and then the theorem is stated slightly more generally—sS' is
only assumed regular at G-invariant primes. Utilizing devices involving
associated graded rings and generalized Rees rings we make a reduction
to a sort of “minimal” graded case: S is the symmetric algebra of a pro-
jective module E over a domain B (where G acts on B, E and B is a K-
algebra) and B has no G-invariant ideals except 0, B. R=S¢ is a finitely
generated graded algebra over a field, B®, and R, is Cohen-Macaulay
except possibly when #=P, the irrelevant maximal ideal (this last con-
dition is what we meant by “minimal”). Let L be the field of fractions of
B. Then L ® S=L[y,, ", yn] is a polynomial ring. R is a direct sum-
mand of S (via the Reynolds operator) and this turns out to imply that
Ris pure in L @ S. Because of this purity, the maps described in Propo-
sition A, which are zero by Proposition A, are also injective, and one finds
that Hi(X, 0x)=0, i=1, where X=Proj(R). [We note that Proposition
A itself is proved by a reduction to characteristic p.] By “minimality”
the local rings of X are Cohen-Macaulay and one can use Serre-
Grothendieck duality to show that RO =73 @, R,;is Cohen-Macaulay
for all large d. In the final stages of the proof, we show that R itself is
Cohen-Macaulay by reducing to characteristic p a second time. (An
important point is that in characteristic p we can take d=p¢ for large e
and then embed R—R® by using the Frobenius.) A key technical lemma
which we use repeatedly in the reductions to characteristic p and which
generalizes the usual statements about generic flatness is

LeEMMA. Let A be a Noetherian domain, R an A-algebra of finite type,
S an R-algebra of finite type, E an S-module of finite type, and M an
R-submodule of E of finite type. Then there is an a € A—{0} such that
E M, is A,-free.

The proof of the characteristic p Theorem is easier and uses local
cohomology analogues of the arguments in the proof of the Main Theorem.

4. Concluding remarks.

REMARK 1. The regularity of S is essential in the statement of the
Main Theorem. There are counterexamples when G=GL(1, K) and § is
a graded Cohen-Macaulay Gorenstein UFD. But the regularity of S is
used in an apparently rather nongeometric way: it is only used to show
that the Frobenius in a certain auxiliary ring, after reducing to characteris-
tic p>0, is flat (cf. [8]).
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REMARK 2. The fact that reduction to characteristic p seems to be
essential in the proof of the Main Theorem is odd, because the Main
Theorem is primarily a characteristic O theorem. There are very few
linearly reductive groups in characteristic p>0. See [12]. We note that in
[13] techniques related to ours are used to settle a number of other ques-
tions.
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