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SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING1 

BY J. T. SCHWARTZ 

1. Introduction. Idealized computer models and abstract algorithms. 
The other speakers in this tutorial symposium will discuss recent 
theoretical developments in computer science. The studies they 
will describe have a combinatorial flavor which all mathematicians 
will find very familiar. My own task is the less tractable one of 
presenting the immediately pragmatic side of computer science; 
specifically, programming, and the content of investigations into 
programming technique. This is work, very directly rooted in the 
fertile muck of everyday industrial practice, out of which grow 
the more theoretical endeavors to be explained in the other lectures. 

The goal at which programming technique aims is the rigorous, 
correct, and maximally clear and simple description of complex 
processes. This description must also be such as to permit efficient 
implementation on a computer. Rigor and correctness are necessary 
because programs are acted on by a device (the computer) lacking 
all but the most rudimentary ability to make inferences or to 
distinguish between the reasonable and the unreasonable. Clarity 
and simplicity of programs are essential because of the inherent 
limitations of the human mind, limitations which the activity of 
programming always makes painfully evident. It deserves to be 
noted that large programs, the most complex artificial objects 
known to mankind, generally threaten at every moment to submerge 
their creators in a flood of complications. Efficiency is important, 
not only because computer time is still an expensive commodity, 
but also because "effective" mathematical procedures can some­
times imply calculations so explosively large as to require astro­
nomically long running times on any conceivable physical device. 

In this expository talk I shall explain some of the notions which 
guide (or ought to guide) programmers in their attempts to develop 
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clear, efficient, and rigorously correct representations of important 
processes. I begin by distinguishing the semantic and the syntactic 
aspects of programming. By semantics I mean the description of 
processes, notational issues being ignored. By syntax I mean the 
study of the specifically notational issues which programming 
must face. Though semantic issues are more fundamental than 
syntactic, it will readily be understood that in describing extremely 
complex processes by texts tens or hundreds of thousands of lines 
long the choice of helpful notations is of great importance. 

In a semantic study one wishes to describe processes with 
minimum attention to notation. One of the best ways of doing 
this is by modeling computation using some type of abstract 
automaton. Various models of this kind have been proposed in 
the literature. Each model highlights some aspect of the process 
of computation significant to the proposer of the model. For 
example, the important Turing machine model of computation 
brings into focus the fact that any deterministic computational 
process can be realized by the iterated performance of a very 
small number of simple and highly stereotyped operations. The 
Turing model also allows one to establish basic quantitative 
measures of computation size, measures on which rest rapidly 
developing theories of computational complexity. Other abstract 
computer models mimic more directly the action of presently 
available or of physically conceivable computers. 

We shall begin our semantic discussion by defining an abstract 
computer model, which, though it hides important efficiency-
related questiops, allows us to approach certain central semantic 
issues very directly. Within this computer model infinitely many 
abstract cells 

• * s C-j, • • «,C_i, C0, Ci, • • *,Ck • • • 
are available. At any step of a computation, each cell contains 
either an integer, a vector, or a (finite) set. We allow sets to have 
elements which are themselves sets, and allow vectors to have 
components which are themselves vectors. 

During every computation all but a finite number of cells will 
always contain the integer zero. The cell C0, which will play a 
special role in our model (it is the so-called instruction location 
counter) is always required to contain an integer (rather than a 
set or vector). 
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To compute in this model, we first prescribe the initial contents 
of finitely many cells (all the others contain 0). After this 'initiali­
zation', execution starts, and the contents of the cells C, change, 
cycle by regular cycle, in accordance with specific execution rules 
(these are given in more detail immediately below). At some later 
time, the computer will stop (we may think of it as ringing a bell 
to announce that it has done so). At this time, the object (set, 
vector, or integer) left in some designated cell (as, e.g. C_i) is 
the result of the computation. 

The execution rules of our model determine the manner in which 
the contents of each cell Cy changes during each cycle of execution. 
These rules are as follows. Suppose that at the start of a cycle 
the cell C0 contains the integer m. Then the content of the cell 
Cm is retrieved. This must be a vector 

(1) (nu---,nk) 

whose components must be integers (if not, or if (1) is of inap­
propriate length, execution will halt). The component nx of the 
instruction vector (1) designates an operation to be performed; 
components n2, •••,*** designate parameters of the operation. 
Our abstract machine is furnished with a certain number TT of 
primitive operations; these are designated by integers nx lying 
in the range 1 ^ nx ^ T. Depending on whether or not Jh lies in 
this range, the operation vector (1) is interpreted in one or another 
way, as follows: 

Case 1. nx designates a primitive operation, i.e., 1 ^ nx ^ *. 
In this case, the primitive operation designated by nx is performed. 

The repertoire of primitive instructions with which our model is 
furnished can be chosen rather arbitrarily; we shall soon see that 
this choice is not a very critical one. Suppose for the sake of illustra­
tion that nx = 10 designates the 'power set' operation, that nx = 11 
designates set intersection, and that nx = 12 designates addition 
of integers. Then 

(a) The instruction vector (10 n2 nz) is interpreted as follows: 
fetch the value u in the cell C„2. This must be a set (otherwise 
execution halts). The power set 2U of u is formed and placed in the 
cell Cn3 (erasing the former contents of Cn3). 

(b) (11 n2 n3 n4) is interpreted by fetching the values u and 
v held in the cells C„2 and Cn3 respectively. Both u and i; must 
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be sets. Their intersection u O v is formed and placed in the cell 
Cn3 (erasing its former contents). 

(c) (12 n2 n3 nA) is interpreted by fetching values u and v 
from Cn2 and Cn3, respectively; both these values must be integers. 
Their sum u + v is formed and placed in Cni. 

It is clear that this style of interpretation allows us to regard 
any set of transformations as the family of primitive operations 
of an abstract computer model. More precisely, any recursive 
function whatsoever can be a primitive operation of our abstract 
computer. Of course, some finite selection of primitives must 
always be made. 

Case 2. The operation code nx of the instruction vector (1) does 
not designate a primitive operation, i.e. nx < 1 or nx > T. 

The important issue which arises in defining the interpretation 
rule to be applied in this case is that of extending the family of 
primitive operations of the abstract computer. In the nonprimitive 
case, i.e. if nx < 1 or nx > w, the content u of the cell Cni is fetched. 
We require that u be a vector (mu • • -,m/) with integer components 
(otherwise execution halts). The vector {mu • • -,m/) is prefixed 
to the final part (n2, •••,/**) of (1), to produce 

(2) (mi , • ",mhn29 • • -,nk), 

and the instruction execution rules that have just been stated 
are applied to the new instruction vector (2) rather than to the 
original instruction vector (1). 

The following codicil completes the definition of the execution 
rules: If during a given cycle of execution the operation executed 
does not of itself change the integer contained in the cell C0, then 
at the conclusion of the cycle the integer in C0 is incremented by 
1. This ensures that execution will progress in" orderly fashion 
from one instruction to the next, except when C0 is deliberately 
changed. 

The execution rules just stated can be exploited most easily if 
we suppose a number of simple but generally useful primitives to 
be available in our abstract machine. We shall list three such: a 
'linking' primitive, a 'conditional assignment' primitive, and an 
'indirect addressing' or 'move indirect' primitive. 

(a) The linking primitive (l,n2, *",nk) is executed as follows: 
the content m of C0 is retrieved, and the vector (m + l ,n 3 , • • -,nk) 
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formed. This vector is placed in the cell C„2 ; n2 +1 is placed in 
Co, and execution continues. 

(b) The conditional assignment primitive (2,n2,n3,/i4) copies 
the value in Cn3 to Cnt if Cn2 contains the value 0; otherwise it 
has no effect. 

(c) The 'move indirect' primitive (3,/i2,n3) is executed as follows. 
The contents m2 and m3 of C„2 and C„3 are retrieved. If m2 and 
m3 are both integers, the content of Cm is copied to Cma; other­
wise, execution halts. 

We now note that a small collection of primitive operations like 
those which have been described allow any desired (recursive) 
transformation to be expressed, and to be treated as a new primitive. 
Rather than proving this far-reaching observation formally, we 
will illustrate it with an example. Suppose that we desire to add, 
to the repertoire of primitive operations of the abstract computer, 
a new operation {j,n2,n$,nA) which takes the contents u and v 
of C„2 and C„3 respectively, forms the intersection 2W n 2" of the 
power sets 2U and 2V, and puts this intersection into Cnt. This can 
be accomplished as follows. We reserve 18 cells Cy, • • -, Cj+n which 
are not needed for any other purpose; j must he outside the range 
1 g j ^ *-. Into these cells we put n-tuples representing the following 
primitive operations of the abstract computer: 

Cell Contents of Cell 
the link primitive with parameter./ + 6 
the integer y -f 4 
the integer y + 5 
arbitrary value \ 
arbitrary value f will be changed by the 
arbitrary value I instructions which follow 
arbitrary value ) 
primitive 'put 1st component of vector Cy+e into Cy+3' 

(3) Cj+g contains primitive 'put 2nd component of vector C,+6 into Cj+49 

primitive 'put 3rd component of vector C;-+e into Cy+s' 
primitive 'put 4th component of vector C;-+e into Cy+e' 
primitive 'move indirect', parameters y + 4 and y + 1 
primitive 'move indirect', parameters y + 5 and y -f 2 
primitive 'put power set of set in Cy+4 into Cj+4 
primitive 'put power set of set in Cy+5 into Cy+5' 
primitive 'put intersection of Cj+4 and Cy+5 into Cy+4* 
primitive 'move indirect', parameters y + 1 and y + 6 
primitive 'put contents of Cy+3 into Co'. 

Cj 
Cj+i 
Ç/+2 
CJ+B 
Cj+4 

Cy+5 
Cy+6 

Cj+i 
Cy+8 

^ + 9 
Cj+10 
Cj+ll 

Cj+12 

Cy+13 
Cj+14 

Cj+15 
Cj+ie 
Cj+n 

contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
contains 
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After the cells Ç,, ••• ,C / f l 7 are initialized in this way, the 
intersection of the power sets of the two sets contained in Cn2 

and Cns respectively can be calculated and placed in Cnt simply 
by executing the instruction vector 

(4) (j>n2,ns,n4). 

We can verify this by following the interpretation of (4), which 
we assume to be contained in the cell C*. Since j lies outside the 
range 1 ^ j' ^ x, (4) is interpreted by retrieving the linking operator 
(1,7+6) from C,; then, according to the execution rule applicable 
in Case 2, we use this to form the longer linking primitive 

(5) <1,7+M2,n3,"4> 

which is then executed. This places (k + l,n2,n3,n4) in C;+6, and 
execution continues with the instruction contained in C,+7. The 
next four instructions put k +l9n29ns9nA into C;+3, C;+4, C/+5, 
C;+6 respectively. Then the instructions contained in Cy+n and 
C/+12 copy the contents u and i; of C„2 and Cn3 to C,+4 and C,+5 re­
spectively. After this, the instructions contained in C;+13 and Cj+U 

replace u and v in C;+4 and Cj+b by 2U and 2V
9 and the next instruction 

puts the desired intersection 2U C\2V into C;+4. Then, since C;+6 

contains n4, the *move indirect' instruction in C;+16 copies 2W Pi 2U 

into Cn4. The final instruction of our sequence puts k + 1 into C0, 
so that computation will continue from the cell following the 
instruction (4) whose execution sequence we have just explained. 

It is clear that the technique illustrated above can be used to 
extend an initially given library of primitives indefinitely. Thus, 
even if some useful transformation is omitted when an abstract 
computer model is specified, it can easily be added to the model's 
repertoire of operations. The semantic side of "the programming 
problem is therefore seen to be that of discovering interesting and 
widely useful families of transformations. 

Having carried our discussion of the semantic question thus 
far, we turn to say a few words about the syntactic side of pro­
gramming. As has already been stated, the word syntax is used 
in connection with the notational issues which arise in programming, 
and may be taken to be descriptive of those processes which 
transform an external program text into a valid initialization of 
the cells C; of an abstract machine. If our abstract computer is 
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to be able to digest external texts, operations which make these 
texts available in a suitable internal form will obviously be re­
quired. This necessity is met as follows. A fixed sufficiently large 
vocabulary of external characters is chosen. Each character is 
assigned some conventional numerical code. Thus, for example, 
we might allow 256 characters, and use the codes 

Character: a,b, ---,z, A, B, . . . ,Z , ...,Î2 
Numerical Code: 0,1, • • •, 25,26,27, • • •, 51, • • •, 255 

With a character set this large, each character is represented by 
a unique pattern of eight binary digits (bits). For example, we 
have the correspondences 

Character: a b • • • A • • • Q 
Binary Pattern: 00000000 00000001 . . . 00011010 11111111 

By concatenating the codes for each of a string of characters and 
prefixing the whole by the binary digit '1', we obtain an integer 
representing the character string uniquely. Thus, for example, 

C a b 

'Cab'-ïoOOllïw 00000000 0000000? 

This trivial system can be used to furnish our abstract machine 
with 'input' and 'output' primitives, which we may take to act 
as follows: 

(a) The input primitive (4 n) reads a character string from an 
external medium and puts its internal representation (an integer) 
into Cn. 

(b) The output primitive (5 n) takes the contents of Cn (which 
must be an integer) and causes the character string which it repre­
sents to appear (printed) on a standard external output medium. 

Having thus made it possible for external texts to be read into 
our abstract computer, we can go on to consider the more inter­
esting problems which surround the internal processing of these 
texts. Programs (in their external representation) are strings of 
characters which when suitably decomposed describe initial data 
for the cells C;; by first initializing the cells C; in the way which 
this data indicates, and by then applying the execution rules 
stated above, we obtain an output which may be called the 
program's result. 
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An essential step in the conversion of an external program text 
T into data which may be used directly to initialize the cells C; 

is analysis of the text T, which we regard as a set of notations, 
into its notationally significant subparts. This is a process which 
has been much and successfully studied by computer scientists, 
who have developed various useful meta-notations for the descrip­
tion of notational systems. The concept central to many of these 
meta-notations is that of a context-free (or Backus-Naur) grammar. 
Such a grammar consists of a set of terminal symbols, a set of 
intermediate symbols, and a family of productions. A terminal 
symbol represents part of a formula literally and directly; an 
intermediate symbol names a clause type. We will write terminal 
symbols simply as character strings containing no blanks, e.g. 
ABC, and write intermediate symbols as character strings con­
tained within pointed braces, e.g. (EXPRESSION). Each produc­
tion in a context-free grammar begins with an intermediate symbol 
(its left-hand side) which is immediately followed by the symbol 
'—>' (to be read as 'may be built up as'). The arrow may then be 
followed by any sequence of terminal and intermediate symbols 
(the right-hand side of the production). A production signifies 
that a clause of the type indicated by its left-hand side may be 
built up by combining the elements appearing on its right-hand side. 

A particular one of the intermediate symbols of each context 
free grammar must be designated as its fundamental or root symbol; 
any clause of the 'root type' which this symbol designates is a 
valid sentence of the notational system or language defined by the 
grammar. 

The following example, which shows a grammar for a restricted 
subfamily of ordinary algebraic expressions, will illustrate the 
general concepts which have just been introduced. 

(EXPRESSION)-(EXPRESSION) (OPERATOR) (EXPRESSION) 
(EXPRESSION) - «EXPRESSION)) 
(EXPRESSION) - X 

(4) (EXPRESSION)-Y 
* (OPERATOR)— + 

(OPERATOR)- -
(OPERATOR)-* 
(OPERATOR)-/ 

We take (EXPRESSION) to be the root type of this grammar. 
The grammar (4) tells us that an expression can be formed, 
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either (first production) recursively as a sequence expression-
operator-expression, or (second production) by enclosing an ex­
pression in parentheses. Moreover (third and fourth productions) 
the signs X and Y are (elementary) expressions, while (remaining 
productions) + , — , * , and / are operators. 

Each context-free grammar G defines a family of trees called 
the G-well-formed syntax trees. These are ordered trees T (in the 
ordinary mathematical sense), whose nodes are marked with 
terminal or intermediate symbols of G. A twig, i.e. a node with 
no descendants, must be marked with a terminal symbol. 
The root node of T must be marked with the root symbol of G. 
For T to be well formed, the following condition must be satisfied 
at each node v which is not a twig: if v is marked with the symbol 
S0, and its descendants (in left-to-right order) are marked with 
the symbols Si,---,S„, then S0—>Si---Sn must be a produc­
tion of G. 

The following figure shows a syntax tree which is well formed 
according to this definition, the operative grammar being (4). 

(EXPRESSION) 

(EXPRESSION) 

(EXPRESSION) 

Y 

(EXPRESSION) 

(EXPRESSION) 

< O P > ^ ^ (EXPRESSION) 

Many syntactic relationships of central importance can be ex­
pressed easily in terms of context free grammars G and the notion 
of a G-well-formed tree. The string covered by a syntax tree T is 
the concatenation, in left-to-right order, of the symbols attached 
to the twigs of T. Similarly, the substring covered by a subtree T' 
is the concatenation of the symbols attached to the twigs of T'. A 
string S is syntactically well formed (according to a grammar G) if 
it is covered by some G-well-formed tree T; it is unambiguous if 
there exists at most one such T. The subclauses of a well-formed 
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string S are the substrings covered by the subtrees of T. In general, 
experience shows that the notions 'grammar' and 'syntax tree' 
give us much of what is needed for the free treatment and variation 
of notational systems. Specifically, once the following operation 
is made available on an abstract computer, it will usually be found 
that notational issues can be handled without undue difficulty: 

Syntax analysis primitive: Given a grammar G and a string S, form 
the G-well-formed syntax tree T which covers S (if T is not unique, 
form the class of all such trees). 

We note that a formal definition of this primitive is easily 
given in set-theoretic terms. A grammar G can be represented 
as a set of n-tuples; for example, the grammar (4) can be repre­
sented as 

{(EXPRESSION, EXPRESSION, OPERATOR, EXPRESSION ), 

(EXPRESSION, <(>, EXPRESSION, ())), (EXPRESSION, (X)), • • •} . 

In set-theoretic terms, a syntax tree (with operative grammar 
G) is a triple (root, descendant-function, marking), where root 
is an integer, descendants function is a function ƒ of two variables 
(i.e., a set of ordered triples), f(n,j) being the jth descendant of 
the node n, and marking is a map which sends each node n into 
a symbol of G. Many variants of the syntax analysis primitive 
described above have been studied in depth recently; quite efficient 
realizations of this primitive are known. 

A notational system defining a family of external program texts 
is commonly called a source language; the system defining the 
internal data structures into which these texts are transformed 
is called a target language. Syntax analysis builds a bridge between 
source and target language. By subjecting source language input 
to syntax analysis, and by performing various additional con­
sistency checks and transformations on the resulting trees, we 
can translate a very great variety of external texts into standard 
target language structures which directly define useful initializa­
tions of the cells of our abstract machine. This allows us to address 
the computer in any notational system we like, so that the funda­
mental syntactic issue becomes: what notations are most con­
venient? 

In summary: we have seen that the family of primitive operations 
available in an abstract computer of the type that we have con-
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sidered is readily extended. The syntactic mechanisms just 
described make it equally easy to modify and extend the system 
of notations which one uses to communicate instructions to the 
computer. Thus, in an initial approach to the programming 
problem, we can hunt without constraint for widely useful, ex­
pressive transformations and notations, and can take these 
transformations and notations as the fundamental semantic 
syntactic elements of a programming language. 

The semantic and syntactic choices actually made in defining 
any particular language will reflect its intended area of application, 
which may be more or less specialized. For a system intended to 
cover a wide but unspecialized range of applications, it is surely 
tempting to make use of the conventional operations and notations 
of set theory, which serve so well and so generally as a basis for 
mathematics. This has in fact been done in several recently 
developed programming languages (cf. [l] and [2]). To give the 
reader some feeling for the flavor of the language which results, 
we shall present a program which realizes a rather simple combina­
torial process, namely Euler's solution of the Bridges of Königsberg 
problem. The problem, it will be recalled, is that of tracing by a 
connected path, all the edges of an ordered graph g, no edge to be 
traced more than once. Euler's construction is as follows: 

(a) If the graph is disconnected or contains more than 2 'odd' 
nodes, i.e., nodes from which an odd number of edges emanate, 
then no Eulerian path exists. Otherwise start with one of the 
odd nodes (or, if there are no odd nodes, with any node). Draw a 
path p in any direction, continuing as long as possible, but never 
crossing the same edge twice. This process will terminate when 
one reaches a node all of whose incident edges have already been 
traversed. 

(b) If the path p contains no node n upon which an untraversed 
edge is incident, then p must include every edge in the graph. In 
the contrary case, start a path from n using some untraversed 
edge. Continue this path q as far as possible, proceeding in the 
same way as in the construction of p. When q can no longer be 
extended, it will be seen to constitute a loop starting and ending 
at n. Replace p by the curve p' consisting of the portion of p 
preceding n, followed by q, followed by the portion of p following n. 

(c) Iterate step (b) as often as possible. Eventually p will come 
to include every edge of the originally given graph. 
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We will now represent the procedure just described in a set-
theoretic programming language, specifically in the SETL language 
developed by the present author and various collaborators (cf. 
[ l ]) . In what follows, we give formal program text on the left 
and informal comments on the right; this should allow the reader 
to comprehend the partly unfamiliar notations of the formal 
programming language. It is assumed in the following that an 
(unordered) graph is given as a symmetric set graph of ordered pairs 
(x,y), the presence of (x,y) in graph signifying that the node x 
is connected to the node y by an edge. A set of ordered pairs may 
also be regarded as a multi-valued function; for each multi-valued 
function /, the notation f\x) denotes the set of all values which 
/ assumes at the point x. 

Program 

nodes = j e ( l ) , e£ graph}; 

odd = jx£nodes | ((#graph)x)) 
mod 2) = 1}; 

if ( # odds) > 2 then 
print 'impossible'; stop; 

else if odds = nullset then 

start = 3 nodes; 
else 

start = 3 odds; 
end if; 
path = (start); 

(while 3 point (k) G path| 
graph {point} ^ nullset) 

parti = path(l :k); 

part2 = path (k + 1:); 

Comments 

Form the set of nodes of the given 
graph; i.e., the set of all initial 
points of edges. 
Form the set of all nodes which have 
an odd number of neighboring nodes. 
If the set of odd nodes has more 
than 2 elements, the graph has no 
Eulerian path. If there are no odd 
nodes, choose an arbitrary element 
of the set of nodes. ( '3 ' denotes the 
operation of arbitrary choice) and 
start there. Otherwise start at an 
arbitrary odd node. 

The path to be constructed, which 
will be represented by an n-tuple, 
begins as a 1-tuple whose only 
component is the starting node. 
While there exists a point in the 
path constructed thus far to which 
untraversed edges are adjacent (let 
this be the £th point), divide path 
into a first portion, parti, extending 
from its first node up to its &th, 
and a second portion, part2> ex­
tending from its k + 1st node to the 
end of path. Now, move point along 
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Program 

(while 3 next £ graph {point}) 

parti = parti + (next); 

graph = graph 
— {(point, next), 

(next, point)}; 
point = next; 

end while 3 next; 
path = parti + part2; 

end while 3 point; 

if ( # path) ^ ( # nodes) then 
print'graph is 

disconnected' ; stop ; 
else 

print path; stop; 
end if; 

2. Realistic computer models. Problems of realization and op­
timization. When we turn from the idealized world of abstract 
computer models and take into account certain restrictions "which 
must apply to any physically constructible device, issues which 
we have till now ignored become visible. Present physical computers 
consist not of infinitely many cells C;, but only of several hundred 
thousand cells. Individual cells are not capable of holding arbi­
trarily complex data objects, but can only hold single integers 
lying in some limited range (e.g. — 2e3 to 2e3). The primitive opera­
tions of a computer will not have indefinitely many arguments, 
but only 3 or 4; primitive operations are not performed instanta­
neously; their execution generally requires a time not much less 
than 10~7 seconds. I t remains true that substantially any trans-

Comments 

untraversed edges to build up a loop. 
Specifically, while there is any 
neighbor of point which can be 
reached along an untraversed edge e, 
append this neighbor to the n-
tuple parti; 
to prevent retraversal of an already 
traversed edge, remove the edge e 
(and its reverse) from the graph, and 
move point to the position of the 
neighbor which has just been ap­
pended to parti. 
When this process can no longer be 
continued, redefine path to be the 
concatenation of the extended parti 
and the former part2- As long as 
there exists a point in path to which 
untraversed nodes are adjacent, 
continue the preceding process. 
When this process can no longer be 
continued, a maximal Eulerian path 
will have been built up. If this path 
does not include all the nodes of 
graph, then graph is disconnected. 
Otherwise we have only to print the 
n- tuple which represents path. 
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formation whose inputs and outputs amount only to a few hundred 
binary digits (bits) can be realized as a built-in primitive of an 
actual computer. However, not many such transformations seem 
to be particularly useful. After considerable experimentation, a 
short list of 'classical' operations, notably integer addition, multi­
plication, and division, bit-by-bit logical operations such as 'and', 
'or', 'invert', and various bit-shift operations remain the most 
useful. 

To make very general, abstractly flavored programming systems 
like those considered in §1 available in actual fact, one must map 
abstract machine programs onto efficient physical machine programs 
having the same output. For this we must represent the compound 
data objects (particularly sets and vectors) of the abstract 
machine by arrays of integers each of limited precision, which 
are the only data objects available on actual physical machines. 
Representations of compound objects which support passably 
efficient implementation of most important operations are by 
now well known. A systematic account of available representation 
techniques will be found in D. Knuth's excellent treatise (cf. 
Knuth [3]). 

Transformation of abstract to concrete programs and data structures 
can be accomplished by transformations, largely local in character, 
which map one program into another on a section-by-section basis. 
However so straightforward an approach can realize only a modest 
level of efficiency. This observation at once confronts us with the 
necessity of optimizing when translating abstract-machine into physical-
machine programs, i.e. with the necessity of developing translation 
techniques produce efficient physical machine programs. Three main 
approaches to this problem have developed. The first approach uses 
relatively routine local transformations during the translation process, 
but restricts the class of abstract programs which one attempts to 
translate. Then, during translation one can exploit the special re­
strictions imposed upon the programs which the translator will have 
to handle, and can thus attain high efficiency translations. For 
example, one may require that a maximum size be pre-stated 
for each data object appearing in an abstract program; a rule of 
this kind allows one to pre-calculate the layout of the group of physical 
machine words used to represent each abstract object, generally 
with very substantial benefit to the efficiency of the resulting trans-
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lation. The difficulty with this approach is that since it restricts the 
dictions available to the programmer, possibly in very significant 
ways, it forces complicated circumlocutions upon him, thus deviating 
from the criteria of clarity and simplicity which define ideal pro­
gramming. 

A second approach involves the use of much more sophisticated 
translation techniques. Application of these techniques begins with 
an overall or 'global' analysis of the program to be translated. This 
analysis enables facts about the program to be deduced; these facts 
allow more efficient translations to be produced than would otherwise 
be possible. Suppose, for example, that analysis of an abstract program 
shows that the value stored in a certain abstract cell is always a set, 
and that the elements of this set are always integers which lie between 
1 and 64. Then (if we are working with a physical machine whose 
cells can store integers at least 64 binary digits long) the set can be 
represented by a single integer in a physical machine cell. The bits 
of this integer will correspond to possible set elements; a bit will be 
1 if the element is actually present in the set, otherwise it will be 0. 
This example should make it clear that by choosing data structures 
which reflect important facts about the objects appearing in an 
abstract program p one can achieve both drastic compression of 
the data to be stored and drastic simplification of the concrete 
steps needed to realize p. The line of endeavor which these reflections 
support will undoubtedly be central to much of the future develop­
ment of programming languages; see Schaefer [4] for a survey of 
progress to date in the important field of program optimization. 

It should be understood that the 'automatic' approach to trans­
lation of abstract into physical machine programs which is suggested 
in the preceding paragraph is more something which is developing 
than something fully feasible at the present time. For this-reason, 
a third and far less formal approach, namely manual translation, 
actually typifies current programming technique. More often than 
not in present technique, the abstract program to be translated 
exists only as an imprecisely formulated overall plan in the pro­
grammer's head. Informally combining a more or less accurate 
understanding of the special properties of the algorithm which 
he means to program with a knowledge of salient special properties 
of a particular physical machine, the programmer writes a detailed 
program in a restricted language close enough to the machine to 
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permit high efficiency to be attained. The great objection to this 
most commonly used approach is that it is tedious, lengthy, 
imperspicuous, and highly error-prone. 

3. An overall view of current programming research. We have 
carried our technical discussion far enough to be able to pause 
and comment more broadly on current programming research. 
This comprises various related activities: including, as already 
noted, both the search for useful and powerfully expressive families 
of transformations, and the search for particularly expressive 
systems of notation. A related endeavor is that of devising semantic 
frameworks within which individual transformations can be 
combined readily and flexibly. This involves the development 
not only of abstract machine models, but also of other systems 
such as the X-calculus and the Curry combinator calculus, within 
which transformations appear as manipulable elements. A related 
goal is to discover efficient procedures which realize important 
abstract transformations, or to find variants of these transformations 
which can be realized in particularly efficient ways. How can 
syntax analysis or matrix multiplication be performed most rapidly? 
How can large masses of data best be organized into tables which 
facilitate rapid search for particular items? These last questions, 
and many others like them, are of great importance in programming 
research. The attempt to answer such questions brings the pragmatic 
study of programming technique into active contact with that 
more theoretical branch of computer science known as formal 
analysis of algorithms. In formal algorithm analysis, one attempts, 
in the first place, to develop rigorous formulae (often asymptotic) 
for the average and worst case behavior of particular algorithms. 
One also attempts to establish a priori lower bounds for the space 
and time required to realize important abstractly defined trans­
formations. Where this succeeds, one can compare the analyzed 
behavior of particular algorithms with firm theoretical ultimate 
limits, and thus can assign an objective 'figure of merit' to al­
gorithms. 

Another important activity is the ongoing attempt to program 
significant procedures which are complex enough to strain existing 
techniques. Pragmatic attempts of this sort force the growth of 
new techniques. There exist several continuing problems for which 
ever-new programming challenges may be expected to arise. One 
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such problem is that of representing (automating) the internal 
procedures of large social organizations. This is the ordinary stuff 
of "business data processing"; the procedures to be programmed 
are complex because they reflect the complex variety of social 
existence. Another pregnant problem is that of duplicating the 
abilities of the human mind, at least in part, whether these be 
"higher" abilities such as theorem proving or "instinctive" func­
tions such as the ability to recognize a two-dimensional line drawing 
as being the projected representation of a particular three-dimensional 
object. Attempts to imitate mental function have forced interesting 
complex program structures on the programmer, and have moti­
vated many sparkling developments in programming technique. 
At a less ambitious but perhaps more immediately practical level 
lies the problem of automating certain types of sophisticated but 
relatively routine mental activity, such as the activity of algebraic 
calculation and simplification, or the activity of manual translation 
of programs between different notational systems. Finally, we may 
mention the problem of program optimization alluded to above, i.e., 
the problem of developing algorithms capable of analyzing abstract 
programs deeply enough to discover facts about them which permit 
their translation into highly efficient programs for a physical machine. 
Related to this last is the problem of constructing algorithms 
which can assist in the process, at present barely manageable, of 
proving programs correct. 

These are all problems which we expect to be long-term sources 
of inspiration for programming research. A part of present research 
concerns itself directly with these matters; another part is focused 
upon issues of an origin more plainly internal to programming 
itself. One such area of current activity is the study of processes 
proceeding in parallel. We can make parallelism possible in our 
abstract machine model by allowing the instruction location 
counter contained in C0 (see §1, p. 2) to be a set S of integers 
(rather than a single integer as before). Then, on each cycle of 
execution of the abstract machine (as thus generalized) we allow 
some subset of S to be chosen, and allow the contents of the cells 
Cj addressed by the integers in S all to be fetched at once and all 
executed. This clearly creates a situation in which one will have 
to investigate more powerful principles of process organization 
than those which suffice when only one single sequence of opera­
tions at a time is being executed. 
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It may be remarked that in many practical situations some 
degree of parallelism must be employed if acceptable performance 
is to be attained. For example, most current computer systems 
are able to perform internal calculations in parallel with the 
reading of new input (perhaps from several sources), with the 
transmission of output information (perhaps to several destinations 
all at the same time), and with the motion of data to and from 
storage devices such as magnetic discs and tapes. Indeed, we may 
note that the rapid progress of computer technology is making 
it possible to employ parallelism on an ever-larger scale. This 
fact lends interest even to toally parallel computer models, one of 
which we may define as follows: A bit-parallel computer consists 
of infinitely many cells • • • B_i, B0, Bu B2, • • •, each of which 
stores a single binary digit. With each cell Bj is associated some 
Boolean function Fj of some finite collection of all these binary 
digits: 

Bj^FiiB^.-'.B^). 

Among the functions Fj, only finitely many different Boolean 
functions appear. In the initial condition of such a model, all but 
a finite number of the bits Bj are 0. On each cycle of operation, 
all the Bj are simultaneously transformed, each Bj becoming 
Fj(Biiy • • - , £ , , ) . When the cell B0, which serves as a 'stop bit', 
changes from 0 to 1, execution halts. 

This model comes reasonably close to a type of computer which 
it might be feasible to build within the next few years. In presently 
visible technologies, a cycle of transformation could be accomplished 
in a time lying between 10~8 and 10~7 seconds. 

Another important area of current research is the study of 
techniques whereby programs known to be correct can be allowed 
to coexist with, and even to control and make use of, other programs 
which might contain errors or be maliciously designed to act 
perversely. This is a central issue in the design of operating systems. 
In studying it, one makes contact with the important question of 
response to and recovery from error. 

4. Another example of current programming research: Nondeter-
ministic programming. Still another active area of current work is 
the search for more general abstract machine models, i.e. of new 
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semantic frameworks which may be particularly useful for the 
description of certain classes of problems. An especially felicitous 
generalization of this kind is due to R. Floyd [5]; functioning 
systems which realize Floyd's suggestion have now been made 
available by groups at MIT and Stanford. Floyd's idea, which 
makes it easier to write programs which explore complex logical 
'mazes', is to allow what may be called a 'predictive oracle' 
to be part of an abstract computer model. Such an oracle 
can be consulted by the programmer whenever he must make a 
decision which will lead his program either to failure or to a successful 
outcome some (possibly very large) number of steps after the point 
at which the decision is taken. To formalize the notion of a predictive 
oracle, we have only to introduce two additional primitives into 
the abstract computer model described in §1. These primitives 
are as follows: 

(A) A primitive fail, without parameters. This, if executed, 
tells the computer that it has failed. (However, since a predictive 
oracle will be used to avoid precisely this situation, we intend 
that the fail primitive should never be executed!) 

(B) A primitive goodualue, with one parameter n. This is the 
predictive oracle itself. When executed, it sets Cn either to the 
value 0 or to the value 1. The value chosen reflects the future 
course of the program being executed. By definition, we choose 
0 if this choice, considered in the light of all the subsequent tests 
and calculations which the program will make, prevents the 
primitive fail from ever being executed. If 0 is inappropriate, but 
1 is appropriate, goodvalue sets Cn to 1. If neither 0 nor 1 is ap­
propriate, i.e., if the oracle itself is baffled, then execution will 
halt and the message "the problem is logically impossible" will 
appear. Of course, since we take it that our oracle's prevision is 
perfect, this means that there is no way that the given program 
can avoid failure. It should be obvious that the goodvalue oracle 
will announce this impossibility the first time it is consulted. 

The reader will readily agree that if an oracle of the type we 
have just described is available, the writing of many algorithms 
will be simplified. We shall now show how the two primitives fail 
and goodvalue which describe the oracle can be implemented on 
the straightforwardly deterministic abstract machine described 
in §1. This implies that any program in which the above 'oracular' 
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primitives are used can be converted in a routine way to a program 
in which they are not used. We proceed as follows. Reserve four 
cells Cj of the abstract machine; for emphasis, and to stress the 
fact that these cells are used for no other purpose, call them A , 
D2, A , D4. Initially, A is to contain the smallest index j for which 
Cj is not zero (we call this index a), D2 the largest index j for which 
Cj is not zero (we call this index ft), and A is to contain the null 
tuple, i.e. a tuple of length 0. To execute the goodvalue operation 
(with parameter n), we place the value 0 in Cra, and append 

(a,p,n content(Ca), content(Ca+i), • • -, content(Q)) 

as a final component to the tuple present in A- Following this, 
the integer in C0 must of course be incremented by 1. To execute 
the fail primitive, we fetch a from A» p from D2, and enter 0 into 
each of the cells Ca, •••,C/3. Then we detach the last component 
v from the tuple t stored in D3; v will be a vector of the form 

(«/,0',n',ca,,cttH.1, •••,c^>. 

Finally, we place a' in A , $' in A , ca' in Ca>, • • «,c^ in C$>, and put 
the value 1 into Cn>. 

The heuristic significance of this quite straightforward formal 
procedure may be explained as follows. When our deterministic 
computer is called upon to play oracle by supplying a 0 or a 1, it 
guesses that a 0 is the value required. The cell A is used to contain 
a history of the computation states preceding each of these guesses. 
The jth component of A records the situation at the time the 
jth guess was made. If a series of guesses leads the program to 
failure, the last preceding guess made is simply reversed, i.e. the 
situation is restored to exactly what it was immediately before 
this guess, and the opposite guess is made. Our quite deterministic 
computation process imitates an infallible oracle simply by for­
getting completely about all its mistakes! Of course, this does not 
do away with the computational effort which these wrong guesses 
make necessary. However, it does allow the programmer to pretend 
in his dictions that his program can infallibly guess the right step 
to take in exploring a logical maze. 

As an example of the type of program made far simpler by the 
'oracular' dictions which the preceding considerations legitimize, 
we consider a familiar puzzle, the so-called problem of eight queens. 
This is the problem of placing eight queens on a chessboard in a 
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pattern in which no two queens attack each other. For a person 
(or a program) who never makes mistakes, the problem is trivial. 
Namely, it is clear that one queen must be placed in each column 
of the chessboard. Therefore merely place the first queen in the 
correct row of the first column, the second queen in the correct 
row of the second column, and so forth until eight queens have 
been placed on the board. To tell which row is correct, simply 
consult the oracle. The following code, which is written in an 
extension of the SETL language already used once, formalizes 
exactly this procedure. Note that in the code the goodvalue primitive 
is represented by a special nondeterministic boolean quantity ok, 
which when oracularly evaluated gives true or false, whichever 
will prevent the statement fail from having to be executed sub­
sequently. As before, we give a formal program on the left and a 
copious set of informal comments on the right. 

columns = {n, 1 ^ n ^ 8} ; 
rows = columns; 
positions = nulltuple; 

(l^VkS 8) 

possibilities = 

rows 

- {positions (j) ,1 ^ j < k} 

- {positionsO*) + k — j , 1 ̂ ; < k} 

- {positions^) + j' - k, 1 ̂  ; < k ) ; 
if 3 r G possibilities | ok then 

positions(fc) = r; 
else 

fail; 
end if; 

end \/k; 

There are eight columns on the board, 
and equally many rows. 
We will use an n-tuple to represent 
the sequence of positions in which 
successive queens are placed. 
Initially, no queens have been placed, 
so this is a tuple of length 0. 
Then, for each column in left-to-
right sequence, 
form the set of rows in which 
it is still possible to place a queen, 
namely 
the set of all rows, minus those 
rows which are attacked by earlier 
queens along a horizontal, minus 
those rows which are attacked by 
earlier queens along a rising diagonal, 
minus those rows which are attacked 
along a falling diagonal. 
If the oracle finds that one of these 
possibilities is correct for placing 
an additional queen, place it there; 
otherwise 

encounter failure. 

When this has been done eight times, 
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print positions; print the sequence of positions in 
stop; which the eight queens have been 

placed. 

The preceding program shows how great an economy of ex­
pression can be attained by adapting one's semantic framework 
to the class of problems one intends to treat. 
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