
BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 80, Number 2, March 1974

SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING1

BY J. T. SCHWARTZ

1. Introduction. Idealized computer models and abstract algorithms.
The other speakers in this tutorial symposium will discuss recent
theoretical developments in computer science. The studies they
will describe have a combinatorial flavor which all mathematicians
will find very familiar. My own task is the less tractable one of
presenting the immediately pragmatic side of computer science;
specifically, programming, and the content of investigations into
programming technique. This is work, very directly rooted in the
fertile muck of everyday industrial practice, out of which grow
the more theoretical endeavors to be explained in the other lectures.

The goal at which programming technique aims is the rigorous,
correct, and maximally clear and simple description of complex
processes. This description must also be such as to permit efficient
implementation on a computer. Rigor and correctness are necessary
because programs are acted on by a device (the computer) lacking
all but the most rudimentary ability to make inferences or to
distinguish between the reasonable and the unreasonable. Clarity
and simplicity of programs are essential because of the inherent
limitations of the human mind, limitations which the activity of
programming always makes painfully evident. It deserves to be
noted that large programs, the most complex artificial objects
known to mankind, generally threaten at every moment to submerge
their creators in a flood of complications. Efficiency is important,
not only because computer time is still an expensive commodity,
but also because "effective" mathematical procedures can some­
times imply calculations so explosively large as to require astro­
nomically long running times on any conceivable physical device.

In this expository talk I shall explain some of the notions which
guide (or ought to guide) programmers in their attempts to develop

A lecture delivered as part of a special tutorial introduction to computer science
at the Annual Meeting in San Francisco on January 13, 1974; received by the
editors October 19, 1973.

AMS (MOS) subject classifications (1970). Primary 68A05, 68—02.
*Work supported by National Science Foundation, Office of Computing

Activities, Contract NSF-GJ-1202X.

Copyright © American Mathematical Society 1974

185

186 J. T. SCHWARTZ [March

clear, efficient, and rigorously correct representations of important
processes. I begin by distinguishing the semantic and the syntactic
aspects of programming. By semantics I mean the description of
processes, notational issues being ignored. By syntax I mean the
study of the specifically notational issues which programming
must face. Though semantic issues are more fundamental than
syntactic, it will readily be understood that in describing extremely
complex processes by texts tens or hundreds of thousands of lines
long the choice of helpful notations is of great importance.

In a semantic study one wishes to describe processes with
minimum attention to notation. One of the best ways of doing
this is by modeling computation using some type of abstract
automaton. Various models of this kind have been proposed in
the literature. Each model highlights some aspect of the process
of computation significant to the proposer of the model. For
example, the important Turing machine model of computation
brings into focus the fact that any deterministic computational
process can be realized by the iterated performance of a very
small number of simple and highly stereotyped operations. The
Turing model also allows one to establish basic quantitative
measures of computation size, measures on which rest rapidly
developing theories of computational complexity. Other abstract
computer models mimic more directly the action of presently
available or of physically conceivable computers.

We shall begin our semantic discussion by defining an abstract
computer model, which, though it hides important efficiency-
related questiops, allows us to approach certain central semantic
issues very directly. Within this computer model infinitely many
abstract cells

• * s C-j, • • «,C_i, C0, Ci, • • *,Ck • • •
are available. At any step of a computation, each cell contains
either an integer, a vector, or a (finite) set. We allow sets to have
elements which are themselves sets, and allow vectors to have
components which are themselves vectors.

During every computation all but a finite number of cells will
always contain the integer zero. The cell C0, which will play a
special role in our model (it is the so-called instruction location
counter) is always required to contain an integer (rather than a
set or vector).

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 187

To compute in this model, we first prescribe the initial contents
of finitely many cells (all the others contain 0). After this 'initiali­
zation', execution starts, and the contents of the cells C, change,
cycle by regular cycle, in accordance with specific execution rules
(these are given in more detail immediately below). At some later
time, the computer will stop (we may think of it as ringing a bell
to announce that it has done so). At this time, the object (set,
vector, or integer) left in some designated cell (as, e.g. C_i) is
the result of the computation.

The execution rules of our model determine the manner in which
the contents of each cell Cy changes during each cycle of execution.
These rules are as follows. Suppose that at the start of a cycle
the cell C0 contains the integer m. Then the content of the cell
Cm is retrieved. This must be a vector

(1) (nu---,nk)

whose components must be integers (if not, or if (1) is of inap­
propriate length, execution will halt). The component nx of the
instruction vector (1) designates an operation to be performed;
components n2, •••,*** designate parameters of the operation.
Our abstract machine is furnished with a certain number TT of
primitive operations; these are designated by integers nx lying
in the range 1 ^ nx ^ T. Depending on whether or not Jh lies in
this range, the operation vector (1) is interpreted in one or another
way, as follows:

Case 1. nx designates a primitive operation, i.e., 1 ^ nx ^ *.
In this case, the primitive operation designated by nx is performed.

The repertoire of primitive instructions with which our model is
furnished can be chosen rather arbitrarily; we shall soon see that
this choice is not a very critical one. Suppose for the sake of illustra­
tion that nx = 10 designates the 'power set' operation, that nx = 11
designates set intersection, and that nx = 12 designates addition
of integers. Then

(a) The instruction vector (10 n2 nz) is interpreted as follows:
fetch the value u in the cell C„2. This must be a set (otherwise
execution halts). The power set 2U of u is formed and placed in the
cell Cn3 (erasing the former contents of Cn3).

(b) (11 n2 n3 n4) is interpreted by fetching the values u and
v held in the cells C„2 and Cn3 respectively. Both u and i; must

188 J. T. SCHWARTZ [March

be sets. Their intersection u O v is formed and placed in the cell
Cn3 (erasing its former contents).

(c) (12 n2 n3 nA) is interpreted by fetching values u and v
from Cn2 and Cn3, respectively; both these values must be integers.
Their sum u + v is formed and placed in Cni.

It is clear that this style of interpretation allows us to regard
any set of transformations as the family of primitive operations
of an abstract computer model. More precisely, any recursive
function whatsoever can be a primitive operation of our abstract
computer. Of course, some finite selection of primitives must
always be made.

Case 2. The operation code nx of the instruction vector (1) does
not designate a primitive operation, i.e. nx < 1 or nx > T.

The important issue which arises in defining the interpretation
rule to be applied in this case is that of extending the family of
primitive operations of the abstract computer. In the nonprimitive
case, i.e. if nx < 1 or nx > w, the content u of the cell Cni is fetched.
We require that u be a vector (mu • • -,m/) with integer components
(otherwise execution halts). The vector {mu • • -,m/) is prefixed
to the final part (n2, •••,/**) of (1), to produce

(2) (mi , • ",mhn29 • • -,nk),

and the instruction execution rules that have just been stated
are applied to the new instruction vector (2) rather than to the
original instruction vector (1).

The following codicil completes the definition of the execution
rules: If during a given cycle of execution the operation executed
does not of itself change the integer contained in the cell C0, then
at the conclusion of the cycle the integer in C0 is incremented by
1. This ensures that execution will progress in" orderly fashion
from one instruction to the next, except when C0 is deliberately
changed.

The execution rules just stated can be exploited most easily if
we suppose a number of simple but generally useful primitives to
be available in our abstract machine. We shall list three such: a
'linking' primitive, a 'conditional assignment' primitive, and an
'indirect addressing' or 'move indirect' primitive.

(a) The linking primitive (l,n2, *",nk) is executed as follows:
the content m of C0 is retrieved, and the vector (m + l ,n 3 , • • -,nk)

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 189

formed. This vector is placed in the cell C„2 ; n2 +1 is placed in
Co, and execution continues.

(b) The conditional assignment primitive (2,n2,n3,/i4) copies
the value in Cn3 to Cnt if Cn2 contains the value 0; otherwise it
has no effect.

(c) The 'move indirect' primitive (3,/i2,n3) is executed as follows.
The contents m2 and m3 of C„2 and C„3 are retrieved. If m2 and
m3 are both integers, the content of Cm is copied to Cma; other­
wise, execution halts.

We now note that a small collection of primitive operations like
those which have been described allow any desired (recursive)
transformation to be expressed, and to be treated as a new primitive.
Rather than proving this far-reaching observation formally, we
will illustrate it with an example. Suppose that we desire to add,
to the repertoire of primitive operations of the abstract computer,
a new operation {j,n2,n$,nA) which takes the contents u and v
of C„2 and C„3 respectively, forms the intersection 2W n 2" of the
power sets 2U and 2V, and puts this intersection into Cnt. This can
be accomplished as follows. We reserve 18 cells Cy, • • -, Cj+n which
are not needed for any other purpose; j must he outside the range
1 g j ^ *-. Into these cells we put n-tuples representing the following
primitive operations of the abstract computer:

Cell Contents of Cell
the link primitive with parameter./ + 6
the integer y -f 4
the integer y + 5
arbitrary value \
arbitrary value f will be changed by the
arbitrary value I instructions which follow
arbitrary value)
primitive 'put 1st component of vector Cy+e into Cy+3'

(3) Cj+g contains primitive 'put 2nd component of vector C,+6 into Cj+49

primitive 'put 3rd component of vector C;-+e into Cy+s'
primitive 'put 4th component of vector C;-+e into Cy+e'
primitive 'move indirect', parameters y + 4 and y + 1
primitive 'move indirect', parameters y + 5 and y -f 2
primitive 'put power set of set in Cy+4 into Cj+4
primitive 'put power set of set in Cy+5 into Cy+5'
primitive 'put intersection of Cj+4 and Cy+5 into Cy+4*
primitive 'move indirect', parameters y + 1 and y + 6
primitive 'put contents of Cy+3 into Co'.

Cj
Cj+i
Ç/+2
CJ+B
Cj+4

Cy+5
Cy+6

Cj+i
Cy+8

^ + 9
Cj+10
Cj+ll

Cj+12

Cy+13
Cj+14

Cj+15
Cj+ie
Cj+n

contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains
contains

190 J. T. SCHWARTZ [March

After the cells Ç,, ••• ,C / f l 7 are initialized in this way, the
intersection of the power sets of the two sets contained in Cn2

and Cns respectively can be calculated and placed in Cnt simply
by executing the instruction vector

(4) (j>n2,ns,n4).

We can verify this by following the interpretation of (4), which
we assume to be contained in the cell C*. Since j lies outside the
range 1 ^ j' ^ x, (4) is interpreted by retrieving the linking operator
(1,7+6) from C,; then, according to the execution rule applicable
in Case 2, we use this to form the longer linking primitive

(5) <1,7+M2,n3,"4>

which is then executed. This places (k + l,n2,n3,n4) in C;+6, and
execution continues with the instruction contained in C,+7. The
next four instructions put k +l9n29ns9nA into C;+3, C;+4, C/+5,
C;+6 respectively. Then the instructions contained in Cy+n and
C/+12 copy the contents u and i; of C„2 and Cn3 to C,+4 and C,+5 re­
spectively. After this, the instructions contained in C;+13 and Cj+U

replace u and v in C;+4 and Cj+b by 2U and 2V
9 and the next instruction

puts the desired intersection 2U C\2V into C;+4. Then, since C;+6

contains n4, the *move indirect' instruction in C;+16 copies 2W Pi 2U

into Cn4. The final instruction of our sequence puts k + 1 into C0,
so that computation will continue from the cell following the
instruction (4) whose execution sequence we have just explained.

It is clear that the technique illustrated above can be used to
extend an initially given library of primitives indefinitely. Thus,
even if some useful transformation is omitted when an abstract
computer model is specified, it can easily be added to the model's
repertoire of operations. The semantic side of "the programming
problem is therefore seen to be that of discovering interesting and
widely useful families of transformations.

Having carried our discussion of the semantic question thus
far, we turn to say a few words about the syntactic side of pro­
gramming. As has already been stated, the word syntax is used
in connection with the notational issues which arise in programming,
and may be taken to be descriptive of those processes which
transform an external program text into a valid initialization of
the cells C; of an abstract machine. If our abstract computer is

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 191

to be able to digest external texts, operations which make these
texts available in a suitable internal form will obviously be re­
quired. This necessity is met as follows. A fixed sufficiently large
vocabulary of external characters is chosen. Each character is
assigned some conventional numerical code. Thus, for example,
we might allow 256 characters, and use the codes

Character: a,b, ---,z, A, B, . . . ,Z , ...,Î2
Numerical Code: 0,1, • • •, 25,26,27, • • •, 51, • • •, 255

With a character set this large, each character is represented by
a unique pattern of eight binary digits (bits). For example, we
have the correspondences

Character: a b • • • A • • • Q
Binary Pattern: 00000000 00000001 . . . 00011010 11111111

By concatenating the codes for each of a string of characters and
prefixing the whole by the binary digit '1', we obtain an integer
representing the character string uniquely. Thus, for example,

C a b

'Cab'-ïoOOllïw 00000000 0000000?

This trivial system can be used to furnish our abstract machine
with 'input' and 'output' primitives, which we may take to act
as follows:

(a) The input primitive (4 n) reads a character string from an
external medium and puts its internal representation (an integer)
into Cn.

(b) The output primitive (5 n) takes the contents of Cn (which
must be an integer) and causes the character string which it repre­
sents to appear (printed) on a standard external output medium.

Having thus made it possible for external texts to be read into
our abstract computer, we can go on to consider the more inter­
esting problems which surround the internal processing of these
texts. Programs (in their external representation) are strings of
characters which when suitably decomposed describe initial data
for the cells C;; by first initializing the cells C; in the way which
this data indicates, and by then applying the execution rules
stated above, we obtain an output which may be called the
program's result.

192 J. T. SCHWARTZ [March

An essential step in the conversion of an external program text
T into data which may be used directly to initialize the cells C;

is analysis of the text T, which we regard as a set of notations,
into its notationally significant subparts. This is a process which
has been much and successfully studied by computer scientists,
who have developed various useful meta-notations for the descrip­
tion of notational systems. The concept central to many of these
meta-notations is that of a context-free (or Backus-Naur) grammar.
Such a grammar consists of a set of terminal symbols, a set of
intermediate symbols, and a family of productions. A terminal
symbol represents part of a formula literally and directly; an
intermediate symbol names a clause type. We will write terminal
symbols simply as character strings containing no blanks, e.g.
ABC, and write intermediate symbols as character strings con­
tained within pointed braces, e.g. (EXPRESSION). Each produc­
tion in a context-free grammar begins with an intermediate symbol
(its left-hand side) which is immediately followed by the symbol
'—>' (to be read as 'may be built up as'). The arrow may then be
followed by any sequence of terminal and intermediate symbols
(the right-hand side of the production). A production signifies
that a clause of the type indicated by its left-hand side may be
built up by combining the elements appearing on its right-hand side.

A particular one of the intermediate symbols of each context
free grammar must be designated as its fundamental or root symbol;
any clause of the 'root type' which this symbol designates is a
valid sentence of the notational system or language defined by the
grammar.

The following example, which shows a grammar for a restricted
subfamily of ordinary algebraic expressions, will illustrate the
general concepts which have just been introduced.

(EXPRESSION)-(EXPRESSION) (OPERATOR) (EXPRESSION)
(EXPRESSION) - «EXPRESSION))
(EXPRESSION) - X

(4) (EXPRESSION)-Y
* (OPERATOR)— +

(OPERATOR)- -
(OPERATOR)-*
(OPERATOR)-/

We take (EXPRESSION) to be the root type of this grammar.
The grammar (4) tells us that an expression can be formed,

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 193

either (first production) recursively as a sequence expression-
operator-expression, or (second production) by enclosing an ex­
pression in parentheses. Moreover (third and fourth productions)
the signs X and Y are (elementary) expressions, while (remaining
productions) + , — , * , and / are operators.

Each context-free grammar G defines a family of trees called
the G-well-formed syntax trees. These are ordered trees T (in the
ordinary mathematical sense), whose nodes are marked with
terminal or intermediate symbols of G. A twig, i.e. a node with
no descendants, must be marked with a terminal symbol.
The root node of T must be marked with the root symbol of G.
For T to be well formed, the following condition must be satisfied
at each node v which is not a twig: if v is marked with the symbol
S0, and its descendants (in left-to-right order) are marked with
the symbols Si,---,S„, then S0—>Si---Sn must be a produc­
tion of G.

The following figure shows a syntax tree which is well formed
according to this definition, the operative grammar being (4).

(EXPRESSION)

(EXPRESSION)

(EXPRESSION)

Y

(EXPRESSION)

(EXPRESSION)

< O P > ^ ^ (EXPRESSION)

Many syntactic relationships of central importance can be ex­
pressed easily in terms of context free grammars G and the notion
of a G-well-formed tree. The string covered by a syntax tree T is
the concatenation, in left-to-right order, of the symbols attached
to the twigs of T. Similarly, the substring covered by a subtree T'
is the concatenation of the symbols attached to the twigs of T'. A
string S is syntactically well formed (according to a grammar G) if
it is covered by some G-well-formed tree T; it is unambiguous if
there exists at most one such T. The subclauses of a well-formed

194 J. T. SCHWARTZ [March

string S are the substrings covered by the subtrees of T. In general,
experience shows that the notions 'grammar' and 'syntax tree'
give us much of what is needed for the free treatment and variation
of notational systems. Specifically, once the following operation
is made available on an abstract computer, it will usually be found
that notational issues can be handled without undue difficulty:

Syntax analysis primitive: Given a grammar G and a string S, form
the G-well-formed syntax tree T which covers S (if T is not unique,
form the class of all such trees).

We note that a formal definition of this primitive is easily
given in set-theoretic terms. A grammar G can be represented
as a set of n-tuples; for example, the grammar (4) can be repre­
sented as

{(EXPRESSION, EXPRESSION, OPERATOR, EXPRESSION),

(EXPRESSION, <(>, EXPRESSION, ())), (EXPRESSION, (X)), • • •} .

In set-theoretic terms, a syntax tree (with operative grammar
G) is a triple (root, descendant-function, marking), where root
is an integer, descendants function is a function ƒ of two variables
(i.e., a set of ordered triples), f(n,j) being the jth descendant of
the node n, and marking is a map which sends each node n into
a symbol of G. Many variants of the syntax analysis primitive
described above have been studied in depth recently; quite efficient
realizations of this primitive are known.

A notational system defining a family of external program texts
is commonly called a source language; the system defining the
internal data structures into which these texts are transformed
is called a target language. Syntax analysis builds a bridge between
source and target language. By subjecting source language input
to syntax analysis, and by performing various additional con­
sistency checks and transformations on the resulting trees, we
can translate a very great variety of external texts into standard
target language structures which directly define useful initializa­
tions of the cells of our abstract machine. This allows us to address
the computer in any notational system we like, so that the funda­
mental syntactic issue becomes: what notations are most con­
venient?

In summary: we have seen that the family of primitive operations
available in an abstract computer of the type that we have con-

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 195

sidered is readily extended. The syntactic mechanisms just
described make it equally easy to modify and extend the system
of notations which one uses to communicate instructions to the
computer. Thus, in an initial approach to the programming
problem, we can hunt without constraint for widely useful, ex­
pressive transformations and notations, and can take these
transformations and notations as the fundamental semantic
syntactic elements of a programming language.

The semantic and syntactic choices actually made in defining
any particular language will reflect its intended area of application,
which may be more or less specialized. For a system intended to
cover a wide but unspecialized range of applications, it is surely
tempting to make use of the conventional operations and notations
of set theory, which serve so well and so generally as a basis for
mathematics. This has in fact been done in several recently
developed programming languages (cf. [l] and [2]). To give the
reader some feeling for the flavor of the language which results,
we shall present a program which realizes a rather simple combina­
torial process, namely Euler's solution of the Bridges of Königsberg
problem. The problem, it will be recalled, is that of tracing by a
connected path, all the edges of an ordered graph g, no edge to be
traced more than once. Euler's construction is as follows:

(a) If the graph is disconnected or contains more than 2 'odd'
nodes, i.e., nodes from which an odd number of edges emanate,
then no Eulerian path exists. Otherwise start with one of the
odd nodes (or, if there are no odd nodes, with any node). Draw a
path p in any direction, continuing as long as possible, but never
crossing the same edge twice. This process will terminate when
one reaches a node all of whose incident edges have already been
traversed.

(b) If the path p contains no node n upon which an untraversed
edge is incident, then p must include every edge in the graph. In
the contrary case, start a path from n using some untraversed
edge. Continue this path q as far as possible, proceeding in the
same way as in the construction of p. When q can no longer be
extended, it will be seen to constitute a loop starting and ending
at n. Replace p by the curve p' consisting of the portion of p
preceding n, followed by q, followed by the portion of p following n.

(c) Iterate step (b) as often as possible. Eventually p will come
to include every edge of the originally given graph.

196 J. T. SCHWARTZ [March

We will now represent the procedure just described in a set-
theoretic programming language, specifically in the SETL language
developed by the present author and various collaborators (cf.
[l]) . In what follows, we give formal program text on the left
and informal comments on the right; this should allow the reader
to comprehend the partly unfamiliar notations of the formal
programming language. It is assumed in the following that an
(unordered) graph is given as a symmetric set graph of ordered pairs
(x,y), the presence of (x,y) in graph signifying that the node x
is connected to the node y by an edge. A set of ordered pairs may
also be regarded as a multi-valued function; for each multi-valued
function /, the notation f\x) denotes the set of all values which
/ assumes at the point x.

Program

nodes = j e (l) , e£ graph};

odd = jx£nodes | ((#graph)x))
mod 2) = 1};

if (# odds) > 2 then
print 'impossible'; stop;

else if odds = nullset then

start = 3 nodes;
else

start = 3 odds;
end if;
path = (start);

(while 3 point (k) G path|
graph {point} ^ nullset)

parti = path(l :k);

part2 = path (k + 1:);

Comments

Form the set of nodes of the given
graph; i.e., the set of all initial
points of edges.
Form the set of all nodes which have
an odd number of neighboring nodes.
If the set of odd nodes has more
than 2 elements, the graph has no
Eulerian path. If there are no odd
nodes, choose an arbitrary element
of the set of nodes. ('3 ' denotes the
operation of arbitrary choice) and
start there. Otherwise start at an
arbitrary odd node.

The path to be constructed, which
will be represented by an n-tuple,
begins as a 1-tuple whose only
component is the starting node.
While there exists a point in the
path constructed thus far to which
untraversed edges are adjacent (let
this be the £th point), divide path
into a first portion, parti, extending
from its first node up to its &th,
and a second portion, part2> ex­
tending from its k + 1st node to the
end of path. Now, move point along

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 197

Program

(while 3 next £ graph {point})

parti = parti + (next);

graph = graph
— {(point, next),

(next, point)};
point = next;

end while 3 next;
path = parti + part2;

end while 3 point;

if (# path) ^ (# nodes) then
print'graph is

disconnected' ; stop ;
else

print path; stop;
end if;

2. Realistic computer models. Problems of realization and op­
timization. When we turn from the idealized world of abstract
computer models and take into account certain restrictions "which
must apply to any physically constructible device, issues which
we have till now ignored become visible. Present physical computers
consist not of infinitely many cells C;, but only of several hundred
thousand cells. Individual cells are not capable of holding arbi­
trarily complex data objects, but can only hold single integers
lying in some limited range (e.g. — 2e3 to 2e3). The primitive opera­
tions of a computer will not have indefinitely many arguments,
but only 3 or 4; primitive operations are not performed instanta­
neously; their execution generally requires a time not much less
than 10~7 seconds. I t remains true that substantially any trans-

Comments

untraversed edges to build up a loop.
Specifically, while there is any
neighbor of point which can be
reached along an untraversed edge e,
append this neighbor to the n-
tuple parti;
to prevent retraversal of an already
traversed edge, remove the edge e
(and its reverse) from the graph, and
move point to the position of the
neighbor which has just been ap­
pended to parti.
When this process can no longer be
continued, redefine path to be the
concatenation of the extended parti
and the former part2- As long as
there exists a point in path to which
untraversed nodes are adjacent,
continue the preceding process.
When this process can no longer be
continued, a maximal Eulerian path
will have been built up. If this path
does not include all the nodes of
graph, then graph is disconnected.
Otherwise we have only to print the
n- tuple which represents path.

198 J. T. SCHWARTZ [March

formation whose inputs and outputs amount only to a few hundred
binary digits (bits) can be realized as a built-in primitive of an
actual computer. However, not many such transformations seem
to be particularly useful. After considerable experimentation, a
short list of 'classical' operations, notably integer addition, multi­
plication, and division, bit-by-bit logical operations such as 'and',
'or', 'invert', and various bit-shift operations remain the most
useful.

To make very general, abstractly flavored programming systems
like those considered in §1 available in actual fact, one must map
abstract machine programs onto efficient physical machine programs
having the same output. For this we must represent the compound
data objects (particularly sets and vectors) of the abstract
machine by arrays of integers each of limited precision, which
are the only data objects available on actual physical machines.
Representations of compound objects which support passably
efficient implementation of most important operations are by
now well known. A systematic account of available representation
techniques will be found in D. Knuth's excellent treatise (cf.
Knuth [3]).

Transformation of abstract to concrete programs and data structures
can be accomplished by transformations, largely local in character,
which map one program into another on a section-by-section basis.
However so straightforward an approach can realize only a modest
level of efficiency. This observation at once confronts us with the
necessity of optimizing when translating abstract-machine into physical-
machine programs, i.e. with the necessity of developing translation
techniques produce efficient physical machine programs. Three main
approaches to this problem have developed. The first approach uses
relatively routine local transformations during the translation process,
but restricts the class of abstract programs which one attempts to
translate. Then, during translation one can exploit the special re­
strictions imposed upon the programs which the translator will have
to handle, and can thus attain high efficiency translations. For
example, one may require that a maximum size be pre-stated
for each data object appearing in an abstract program; a rule of
this kind allows one to pre-calculate the layout of the group of physical
machine words used to represent each abstract object, generally
with very substantial benefit to the efficiency of the resulting trans-

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 199

lation. The difficulty with this approach is that since it restricts the
dictions available to the programmer, possibly in very significant
ways, it forces complicated circumlocutions upon him, thus deviating
from the criteria of clarity and simplicity which define ideal pro­
gramming.

A second approach involves the use of much more sophisticated
translation techniques. Application of these techniques begins with
an overall or 'global' analysis of the program to be translated. This
analysis enables facts about the program to be deduced; these facts
allow more efficient translations to be produced than would otherwise
be possible. Suppose, for example, that analysis of an abstract program
shows that the value stored in a certain abstract cell is always a set,
and that the elements of this set are always integers which lie between
1 and 64. Then (if we are working with a physical machine whose
cells can store integers at least 64 binary digits long) the set can be
represented by a single integer in a physical machine cell. The bits
of this integer will correspond to possible set elements; a bit will be
1 if the element is actually present in the set, otherwise it will be 0.
This example should make it clear that by choosing data structures
which reflect important facts about the objects appearing in an
abstract program p one can achieve both drastic compression of
the data to be stored and drastic simplification of the concrete
steps needed to realize p. The line of endeavor which these reflections
support will undoubtedly be central to much of the future develop­
ment of programming languages; see Schaefer [4] for a survey of
progress to date in the important field of program optimization.

It should be understood that the 'automatic' approach to trans­
lation of abstract into physical machine programs which is suggested
in the preceding paragraph is more something which is developing
than something fully feasible at the present time. For this-reason,
a third and far less formal approach, namely manual translation,
actually typifies current programming technique. More often than
not in present technique, the abstract program to be translated
exists only as an imprecisely formulated overall plan in the pro­
grammer's head. Informally combining a more or less accurate
understanding of the special properties of the algorithm which
he means to program with a knowledge of salient special properties
of a particular physical machine, the programmer writes a detailed
program in a restricted language close enough to the machine to

200 J. T. SCHWARTZ [March

permit high efficiency to be attained. The great objection to this
most commonly used approach is that it is tedious, lengthy,
imperspicuous, and highly error-prone.

3. An overall view of current programming research. We have
carried our technical discussion far enough to be able to pause
and comment more broadly on current programming research.
This comprises various related activities: including, as already
noted, both the search for useful and powerfully expressive families
of transformations, and the search for particularly expressive
systems of notation. A related endeavor is that of devising semantic
frameworks within which individual transformations can be
combined readily and flexibly. This involves the development
not only of abstract machine models, but also of other systems
such as the X-calculus and the Curry combinator calculus, within
which transformations appear as manipulable elements. A related
goal is to discover efficient procedures which realize important
abstract transformations, or to find variants of these transformations
which can be realized in particularly efficient ways. How can
syntax analysis or matrix multiplication be performed most rapidly?
How can large masses of data best be organized into tables which
facilitate rapid search for particular items? These last questions,
and many others like them, are of great importance in programming
research. The attempt to answer such questions brings the pragmatic
study of programming technique into active contact with that
more theoretical branch of computer science known as formal
analysis of algorithms. In formal algorithm analysis, one attempts,
in the first place, to develop rigorous formulae (often asymptotic)
for the average and worst case behavior of particular algorithms.
One also attempts to establish a priori lower bounds for the space
and time required to realize important abstractly defined trans­
formations. Where this succeeds, one can compare the analyzed
behavior of particular algorithms with firm theoretical ultimate
limits, and thus can assign an objective 'figure of merit' to al­
gorithms.

Another important activity is the ongoing attempt to program
significant procedures which are complex enough to strain existing
techniques. Pragmatic attempts of this sort force the growth of
new techniques. There exist several continuing problems for which
ever-new programming challenges may be expected to arise. One

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 201

such problem is that of representing (automating) the internal
procedures of large social organizations. This is the ordinary stuff
of "business data processing"; the procedures to be programmed
are complex because they reflect the complex variety of social
existence. Another pregnant problem is that of duplicating the
abilities of the human mind, at least in part, whether these be
"higher" abilities such as theorem proving or "instinctive" func­
tions such as the ability to recognize a two-dimensional line drawing
as being the projected representation of a particular three-dimensional
object. Attempts to imitate mental function have forced interesting
complex program structures on the programmer, and have moti­
vated many sparkling developments in programming technique.
At a less ambitious but perhaps more immediately practical level
lies the problem of automating certain types of sophisticated but
relatively routine mental activity, such as the activity of algebraic
calculation and simplification, or the activity of manual translation
of programs between different notational systems. Finally, we may
mention the problem of program optimization alluded to above, i.e.,
the problem of developing algorithms capable of analyzing abstract
programs deeply enough to discover facts about them which permit
their translation into highly efficient programs for a physical machine.
Related to this last is the problem of constructing algorithms
which can assist in the process, at present barely manageable, of
proving programs correct.

These are all problems which we expect to be long-term sources
of inspiration for programming research. A part of present research
concerns itself directly with these matters; another part is focused
upon issues of an origin more plainly internal to programming
itself. One such area of current activity is the study of processes
proceeding in parallel. We can make parallelism possible in our
abstract machine model by allowing the instruction location
counter contained in C0 (see §1, p. 2) to be a set S of integers
(rather than a single integer as before). Then, on each cycle of
execution of the abstract machine (as thus generalized) we allow
some subset of S to be chosen, and allow the contents of the cells
Cj addressed by the integers in S all to be fetched at once and all
executed. This clearly creates a situation in which one will have
to investigate more powerful principles of process organization
than those which suffice when only one single sequence of opera­
tions at a time is being executed.

202 J. T. SCHWARTZ [March

It may be remarked that in many practical situations some
degree of parallelism must be employed if acceptable performance
is to be attained. For example, most current computer systems
are able to perform internal calculations in parallel with the
reading of new input (perhaps from several sources), with the
transmission of output information (perhaps to several destinations
all at the same time), and with the motion of data to and from
storage devices such as magnetic discs and tapes. Indeed, we may
note that the rapid progress of computer technology is making
it possible to employ parallelism on an ever-larger scale. This
fact lends interest even to toally parallel computer models, one of
which we may define as follows: A bit-parallel computer consists
of infinitely many cells • • • B_i, B0, Bu B2, • • •, each of which
stores a single binary digit. With each cell Bj is associated some
Boolean function Fj of some finite collection of all these binary
digits:

Bj^FiiB^.-'.B^).

Among the functions Fj, only finitely many different Boolean
functions appear. In the initial condition of such a model, all but
a finite number of the bits Bj are 0. On each cycle of operation,
all the Bj are simultaneously transformed, each Bj becoming
Fj(Biiy • • - , £ , ,) . When the cell B0, which serves as a 'stop bit',
changes from 0 to 1, execution halts.

This model comes reasonably close to a type of computer which
it might be feasible to build within the next few years. In presently
visible technologies, a cycle of transformation could be accomplished
in a time lying between 10~8 and 10~7 seconds.

Another important area of current research is the study of
techniques whereby programs known to be correct can be allowed
to coexist with, and even to control and make use of, other programs
which might contain errors or be maliciously designed to act
perversely. This is a central issue in the design of operating systems.
In studying it, one makes contact with the important question of
response to and recovery from error.

4. Another example of current programming research: Nondeter-
ministic programming. Still another active area of current work is
the search for more general abstract machine models, i.e. of new

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 203

semantic frameworks which may be particularly useful for the
description of certain classes of problems. An especially felicitous
generalization of this kind is due to R. Floyd [5]; functioning
systems which realize Floyd's suggestion have now been made
available by groups at MIT and Stanford. Floyd's idea, which
makes it easier to write programs which explore complex logical
'mazes', is to allow what may be called a 'predictive oracle'
to be part of an abstract computer model. Such an oracle
can be consulted by the programmer whenever he must make a
decision which will lead his program either to failure or to a successful
outcome some (possibly very large) number of steps after the point
at which the decision is taken. To formalize the notion of a predictive
oracle, we have only to introduce two additional primitives into
the abstract computer model described in §1. These primitives
are as follows:

(A) A primitive fail, without parameters. This, if executed,
tells the computer that it has failed. (However, since a predictive
oracle will be used to avoid precisely this situation, we intend
that the fail primitive should never be executed!)

(B) A primitive goodualue, with one parameter n. This is the
predictive oracle itself. When executed, it sets Cn either to the
value 0 or to the value 1. The value chosen reflects the future
course of the program being executed. By definition, we choose
0 if this choice, considered in the light of all the subsequent tests
and calculations which the program will make, prevents the
primitive fail from ever being executed. If 0 is inappropriate, but
1 is appropriate, goodvalue sets Cn to 1. If neither 0 nor 1 is ap­
propriate, i.e., if the oracle itself is baffled, then execution will
halt and the message "the problem is logically impossible" will
appear. Of course, since we take it that our oracle's prevision is
perfect, this means that there is no way that the given program
can avoid failure. It should be obvious that the goodvalue oracle
will announce this impossibility the first time it is consulted.

The reader will readily agree that if an oracle of the type we
have just described is available, the writing of many algorithms
will be simplified. We shall now show how the two primitives fail
and goodvalue which describe the oracle can be implemented on
the straightforwardly deterministic abstract machine described
in §1. This implies that any program in which the above 'oracular'

204 J. T. SCHWARTZ [March

primitives are used can be converted in a routine way to a program
in which they are not used. We proceed as follows. Reserve four
cells Cj of the abstract machine; for emphasis, and to stress the
fact that these cells are used for no other purpose, call them A ,
D2, A , D4. Initially, A is to contain the smallest index j for which
Cj is not zero (we call this index a), D2 the largest index j for which
Cj is not zero (we call this index ft), and A is to contain the null
tuple, i.e. a tuple of length 0. To execute the goodvalue operation
(with parameter n), we place the value 0 in Cra, and append

(a,p,n content(Ca), content(Ca+i), • • -, content(Q))

as a final component to the tuple present in A- Following this,
the integer in C0 must of course be incremented by 1. To execute
the fail primitive, we fetch a from A» p from D2, and enter 0 into
each of the cells Ca, •••,C/3. Then we detach the last component
v from the tuple t stored in D3; v will be a vector of the form

(«/,0',n',ca,,cttH.1, •••,c^>.

Finally, we place a' in A , $' in A , ca' in Ca>, • • «,c^ in C$>, and put
the value 1 into Cn>.

The heuristic significance of this quite straightforward formal
procedure may be explained as follows. When our deterministic
computer is called upon to play oracle by supplying a 0 or a 1, it
guesses that a 0 is the value required. The cell A is used to contain
a history of the computation states preceding each of these guesses.
The jth component of A records the situation at the time the
jth guess was made. If a series of guesses leads the program to
failure, the last preceding guess made is simply reversed, i.e. the
situation is restored to exactly what it was immediately before
this guess, and the opposite guess is made. Our quite deterministic
computation process imitates an infallible oracle simply by for­
getting completely about all its mistakes! Of course, this does not
do away with the computational effort which these wrong guesses
make necessary. However, it does allow the programmer to pretend
in his dictions that his program can infallibly guess the right step
to take in exploring a logical maze.

As an example of the type of program made far simpler by the
'oracular' dictions which the preceding considerations legitimize,
we consider a familiar puzzle, the so-called problem of eight queens.
This is the problem of placing eight queens on a chessboard in a

1973] SEMANTIC AND SYNTACTIC ISSUES IN PROGRAMMING 205

pattern in which no two queens attack each other. For a person
(or a program) who never makes mistakes, the problem is trivial.
Namely, it is clear that one queen must be placed in each column
of the chessboard. Therefore merely place the first queen in the
correct row of the first column, the second queen in the correct
row of the second column, and so forth until eight queens have
been placed on the board. To tell which row is correct, simply
consult the oracle. The following code, which is written in an
extension of the SETL language already used once, formalizes
exactly this procedure. Note that in the code the goodvalue primitive
is represented by a special nondeterministic boolean quantity ok,
which when oracularly evaluated gives true or false, whichever
will prevent the statement fail from having to be executed sub­
sequently. As before, we give a formal program on the left and a
copious set of informal comments on the right.

columns = {n, 1 ^ n ^ 8} ;
rows = columns;
positions = nulltuple;

(l^VkS 8)

possibilities =

rows

- {positions (j) ,1 ^ j < k}

- {positionsO*) + k — j , 1 ̂ ; < k}

- {positions^) + j' - k, 1 ̂ ; < k) ;
if 3 r G possibilities | ok then

positions(fc) = r;
else

fail;
end if;

end \/k;

There are eight columns on the board,
and equally many rows.
We will use an n-tuple to represent
the sequence of positions in which
successive queens are placed.
Initially, no queens have been placed,
so this is a tuple of length 0.
Then, for each column in left-to-
right sequence,
form the set of rows in which
it is still possible to place a queen,
namely
the set of all rows, minus those
rows which are attacked by earlier
queens along a horizontal, minus
those rows which are attacked by
earlier queens along a rising diagonal,
minus those rows which are attacked
along a falling diagonal.
If the oracle finds that one of these
possibilities is correct for placing
an additional queen, place it there;
otherwise

encounter failure.

When this has been done eight times,

206 J. T. SCHWARTZ

print positions; print the sequence of positions in
stop; which the eight queens have been

placed.

The preceding program shows how great an economy of ex­
pression can be attained by adapting one's semantic framework
to the class of problems one intends to treat.

BIBLIOGRAPHY

1. J. T. Schwartz, On programming. An interim report on the SETL project.
Installment 1. Generalities (1973).
Installment 2. The SETL language and examples of its use (1973) 502 pp.
Installment 3. Extension and optimization (in prep.)

Computer Science Department, Courant Inst. Math. Sci., New York Univ.,
New York, N. Y.

2. J. B. Morris, A comparison of MADCAP and SETL, Los Alamos Scientific
Laboratory, Univ. of California, Los Alamos, New Mexico, (1973).

3. Donald Knuth, The art of computer programming, Vol. I. Fundamental
algorithms, (1968); Vol. II. Seminumerical algorithms, (1969); Vol. III. Sorting
and searching, (1973), Addison-Wesley Publishing Co., Reading, Mass.

4. Marvin Schaefer, A mathematical theory of global program optimization,
Prentice-Hall Publishers, Englewood Cliffs, N. J., (1973).

5. Robert Floyd, Nondeterministic algorithms, J. Assoc. Comput. Mach. 14
(1967), 636-644.

DEPARTMENT OF COMPUTER SCIENCE, COURANT INSTITUTE OF MATHEMATICAL

SCIENCES, 251 MERCER ST., NEW YORK, NEW YORK 10012

