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ABSTRACT. We note that a certain dynamical system on E* has 
local sections which are not classical 3-manifolds. This dynamical 
system cannot be isomorphic or geometrically equivalent to a 
differential system on E*. 

Problems 8 and 9 of [3, p. 225] raise the question whether each dynami­
cal system defined on a differentiable manifold is isomorphic or topologi­
cal^ equivalent to a differential system. The purpose of this note is to 
supply a dynamical system on J£4 which gives a negative answer to the 
above questions. 

DEFINITIONS. A dynamical system on a topological space X is a triple 
(X,E,7T) where 2s=real number line and ir.XxE-^X is a continuous 
map with the properties that for each x e X, tl9 t2 e E, 7T(X9 0)=X and 
7r(7r(x, ty), r2)=7r(x, tx+t2). A trajectory of (X, E9 IT) is a set TT({X}XE) 
for a fixed x e X. A rest point of (X9 E9 TT) is a point in X which is also a 
trajectory. 

A local section of extent «>0 for (X, E, rr) is a subset S<^ x with the 
property that the restriction of *n to Sx (—e9 e) is a topological embedding 
into X. S generates neighborhoods for K<=^ Xii9 for every ô>0, Kis interior 
to TT(SX (—<5, (5)). If Sis a local section of extent £>0, we write STT(—Ô9 Ô) 
foT7r(Sx(-ô,ô)),0<ô<e. 

THEOREM 1. Let Xbe aT2 topological space, and (X2 E9 n) a dynamical 
system on X. Suppose that S and T are each locally compact local sections 
of extent e>0 which generate neighborhoods for a point p e X, Then there 
are relatively open subsets £/<= S, V<^ T, each containing p9 with U homeo-
morphic to V. 

PROOF. For any space F, let PR denote the projection mapping of 
Yx (—£, s) onto (—e> e). Because 7r:Sx (—e, e)->S7r(—e, s) is a homeo-
morphism, s(x)^PRo ^(x) is a continuous map from STr(—e9 e) to 
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(—e, e). For any x e S7r(—e, e)9 y=7r(x9 — s(x)) is the unique point in S 
which belongs to that trajectory segment of S7r(—e, s) containing x. 
Similarly, there is a continuous map t:T7r(—€, £)->(—£, s) such that 
for any v e T7r(—s9 s)9 TT(V9 — t(v)) is the unique point of T which belongs 
to that trajectory segment of TTT(—€9 S) containing v. 

Let M be a compact subset of Tn(S7r(—e9 e)) which contains/? on its 
interior relative to T. Since M<zSir(—e, e)9 the map F:M->S defined by 
F(X)=7T(X9 — s(x)) makes sense and is continuous. For any pair a9 b e M9 

\s(a)\<e and \s(b)\<e. Because the restriction of ir to Tx(—e9s) is 
injective, and a9 b e T9 if 7r(a9 —s(a))=7r(b9 —s(b)) then a=b. We see 
that F:M->S is injective, and hence a homeomorphism onto its image. 

It remains to show that F(M) is a neighborhood ofp in S. If there were 
a net {pa} in TTT{—B9 e)C\(S\F(M)) converging to p9 eventually the net 
{7r(/7a, —t(pa))} in T would be in M because this net converges top in T. 
Each pa is in S9 and \t(pa)\<s9 so F(ir(pa9--^(jpa)))=jp0t. A contradiction 
has been reached, as 7r(/?a, —t(pj) must eventually be in M, and yet 
F(rr(pa9 — t(pa)))=pa can never be in F(M). We choose F to be any open 
subset of M containing p9 and set U~F(V). Q.E.D. 

DEFINITION. TWO dynamical systems {X9E9TT) and (Y9E97r) are 
isomorphic if and only if there is a homeomorphism ƒ : X=> Y such that 
for every (y91) e YxE, ir{y9 t)=f(>n{f-\y)91)). 

LEMMA 1. If (X9 E9 TT) and ( Y9 E9 if) are isomorphic dynamical systems 
and S is a local section of extent e for (X9 E9 TT)9 then f (S) is a local section 
of extent e for (Y9 E9 TT). 

PROOF. The following diagram commutes. 

S X (—£, s) >TT(S X (—e, e)) 
A I 

If^xid 
I Y 

f (S) x ( - s , e) —J—>a(f(S) X ( -6 , e)). Q.E.D. 

DEFINITION. Let H0(E9 E) be the space of homeomorphisms from E 
onto E which take zero to zero, with the compact-open topology. Two 
dynamical systems (X9 E9 7?) and (X9 E9 if) are geometrically equivalent 
if and only if there is a map h : X-+H0(E9 E) which is continuous except 
possibly at the rest points of (X, E9 TT)9 such that TT(X9 t)=7r(x9 hx(t)). 

LEMMA 2. If (X9 E9 TT) and (X, E9 if) are geometrically equivalent 
dynamical systems and S is a compact local section of positive extent for 
(X9 E9 TT), then S is also a local section of positive extent for (X9 E9 if). 

PROOF. With d - m i n m a x ^ * e E:\hx(t)\9 \hx(~-t)\^el2}9 ô is posi­
tive because S is compact and the restriction of h to S is continuous. Let e 
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be the evaluation map e:H0(E, E)xE-+E and note that idxeo h maps 
(x9 t) to (x, hx{t)). The restriction of TT to Sx [—<5, ô] is defined by: 

S X [ -Ó , Ô] -- > Sir(-89 s) 

id x eoh 

S X (—€, e) 

It is clear that the restriction of id X e o h to Sx [—ó, ô] is an embedding 
into Sx (—£, e)9 so S is a local section of extent ó under (X9 E9 TT). Q.E.D. 

Differential systems. Given a locally lipschitzian function ƒ ;EN-+EN 

we may define <£(/, j ) to be the solution, at time t9 to the equation x= 
f{x) with the condition <l>(09y)=y. Then TT(X9 t)~</>(t9 x) is a dynamical 
system map on EN

9 since the solutions to x~f(x) depend continuously on 
initial data. We call a dynamical system arising in this way a differential 
system. It is easy to see that each nonrest point of a differential system 
on EN has an (N~ l)-cell local section that generates neighborhoods for it 
[4, pp. 37-46]. Theorem 1, together with Lemmas 1 and 2, implies that if 
(EN

9 E9 77) is a dynamical system which is either isomorphic or geometri­
cally equivalent to a differential system, then each local section of 
(EN

9 E9 rr) which generates neighborhoods for itself must be a classical 
(N— l)-manifold. 

The example. Consider the example, due to Bing, of a nonmanifold 
B<^E* such that there is a homeomorphism h:BxE=>E*. In [2, Theorem 
13] J? is shown to have a cantor set of points where it is a nonmanifold, 
and in [1] the construction of h is accomplished. Let PB, PR be the respec­
tive projections of BxR onto B and onto R. We write the arguments of 
h as pairs in B x E. 

Let (E4, E, rr) be the system defined by 

TT(X, 0 = h(PB o / r 1 ^ ) , PB o hr-^x) + t). 

THEOREM 2. (is4, E9 TT) is a dynamical system, and Sz=h(Bx{Q}) is a 
local section which generates neighborhoods for itself. 

PROOF. The proof is an easily accomplished verification. 

COROLLARY, (is4, E, TT) is neither isomorphic to nor geometrically 
equivalent to a differential system on £4. 

PROOF. The set S defined above is not a classical 3-manifold. 
Question. Characterize topologically the dynamical systems which are 

differential systems. 
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