A DYNAMICAL SYSTEM ON E⁴ NEITHER ISOMORPHIC NOR EQUIVALENT TO A DIFFERENTIAL SYSTEM

BY W. C. CHEWNING

Communicated by Steve Armentrout, June 28, 1973

ABSTRACT. We note that a certain dynamical system on E^4 has local sections which are not classical 3-manifolds. This dynamical system cannot be isomorphic or geometrically equivalent to a differential system on E^4 .

Problems 8 and 9 of [3, p. 225] raise the question whether each dynamical system defined on a differentiable manifold is isomorphic or topologically equivalent to a differential system. The purpose of this note is to supply a dynamical system on E^4 which gives a negative answer to the above questions.

DEFINITIONS. A dynamical system on a topological space X is a triple (X, E, π) where E=real number line and $\pi: X \times E \to X$ is a continuous map with the properties that for each $x \in X$, t_1 , $t_2 \in E$, $\pi(x, 0) = x$ and $\pi(\pi(x, t_1), t_2) = \pi(x, t_1 + t_2)$. A trajectory of (X, E, π) is a set $\pi(\{x\} \times E)$ for a fixed $x \in X$. A rest point of (X, E, π) is a point in X which is also a trajectory.

A local section of extent $\varepsilon > 0$ for (X, E, π) is a subset $S \subseteq X$ with the property that the restriction of π to $S \times (-\varepsilon, \varepsilon)$ is a topological embedding into X. S generates neighborhoods for $K \subseteq X$ if, for every $\delta > 0$, K is interior to $\pi(S \times (-\delta, \delta))$. If S is a local section of extent $\varepsilon > 0$, we write $S\pi(-\delta, \delta)$ for $\pi(S \times (-\delta, \delta))$, $0 < \delta < \varepsilon$.

THEOREM 1. Let X be a T_2 topological space, and (X, E, π) a dynamical system on X. Suppose that S and T are each locally compact local sections of extent $\varepsilon > 0$ which generate neighborhoods for a point $p \in X$. Then there are relatively open subsets $U \subseteq S$, $V \subseteq T$, each containing p, with U homeomorphic to V.

PROOF. For any space Y, let P_R denote the projection mapping of $Y \times (-\varepsilon, \varepsilon)$ onto $(-\varepsilon, \varepsilon)$. Because $\pi: S \times (-\varepsilon, \varepsilon) \to S\pi(-\varepsilon, \varepsilon)$ is a homeomorphism, $s(x) \equiv P_R \circ \pi^{-1}(x)$ is a continuous map from $S\pi(-\varepsilon, \varepsilon)$ to

AMS (MOS) subject classifications (1970). Primary 34C35, 54H20, 58F99.

Key words and phrases. Dynamical system, local section, geometrically equivalent, isomorphic.

 $(-\varepsilon, \varepsilon)$. For any $x \in S\pi(-\varepsilon, \varepsilon)$, $y = \pi(x, -s(x))$ is the unique point in S which belongs to that trajectory segment of $S\pi(-\varepsilon, \varepsilon)$ containing x. Similarly, there is a continuous map $t: T\pi(-\varepsilon, \varepsilon) \to (-\varepsilon, \varepsilon)$ such that for any $v \in T\pi(-\varepsilon, \varepsilon)$, $\pi(v, -t(v))$ is the unique point of T which belongs to that trajectory segment of $T\pi(-\varepsilon, \varepsilon)$ containing v.

Let M be a compact subset of $T \cap (S\pi(-\varepsilon, \varepsilon))$ which contains p on its interior relative to T. Since $M \subseteq S\pi(-\varepsilon, \varepsilon)$, the map $F: M \to S$ defined by $F(x) = \pi(x, -s(x))$ makes sense and is continuous. For any pair $a, b \in M$, $|s(a)| < \varepsilon$ and $|s(b)| < \varepsilon$. Because the restriction of π to $T \times (-\varepsilon, \varepsilon)$ is injective, and $a, b \in T$, if $\pi(a, -s(a)) = \pi(b, -s(b))$ then a = b. We see that $F: M \to S$ is injective, and hence a homeomorphism onto its image.

It remains to show that F(M) is a neighborhood of p in S. If there were a net $\{p_{\alpha}\}$ in $T\pi(-\varepsilon, \varepsilon) \cap (S \setminus F(M))$ converging to p, eventually the net $\{\pi(p_{\alpha}, -t(p_{\alpha}))\}$ in T would be in M because this net converges to p in T. Each p_{α} is in S, and $|t(p_{\alpha})| < \varepsilon$, so $F(\pi(p_{\alpha}, -t(p_{\alpha}))) = p_{\alpha}$. A contradiction has been reached, as $\pi(p_{\alpha}, -t(p_{\alpha}))$ must eventually be in M, and yet $F(\pi(p_{\alpha}, -t(p_{\alpha}))) = p_{\alpha}$ can never be in F(M). We choose V to be any open subset of M containing p, and set U = F(V). Q.E.D.

DEFINITION. Two dynamical systems (X, E, π) and $(Y, E, \bar{\pi})$ are isomorphic if and only if there is a homeomorphism $f: X \Rightarrow Y$ such that for every $(y, t) \in Y \times E$, $\bar{\pi}(y, t) = f(\pi(f^{-1}(y), t))$.

LEMMA 1. If (X, E, π) and $(Y, E, \bar{\pi})$ are isomorphic dynamical systems and S is a local section of extent ε for (X, E, π) , then f(S) is a local section of extent ε for $(Y, E, \bar{\pi})$.

PROOF. The following diagram commutes.

$$S \times (-\varepsilon, \varepsilon) \xrightarrow{\pi} \pi(S \times (-\varepsilon, \varepsilon))$$

$$\uparrow^{f^{-1} \times \mathrm{id}} \qquad \qquad \downarrow^{f}$$

$$f(S) \times (-\varepsilon, \varepsilon) \xrightarrow{\overline{\pi}} \pi(f(S) \times (-\varepsilon, \varepsilon)). \qquad Q.E.D.$$

DEFINITION. Let $H_0(E, E)$ be the space of homeomorphisms from E onto E which take zero to zero, with the compact-open topology. Two dynamical systems (X, E, π) and $(X, E, \bar{\pi})$ are geometrically equivalent if and only if there is a map $h: X \rightarrow H_0(E, E)$ which is continuous except possibly at the rest points of (X, E, π) , such that $\bar{\pi}(x, t) = \pi(x, h_x(t))$.

LEMMA 2. If (X, E, π) and $(X, E, \bar{\pi})$ are geometrically equivalent dynamical systems and S is a compact local section of positive extent for (X, E, π) , then S is also a local section of positive extent for $(X, E, \bar{\pi})$.

PROOF. With $\delta \equiv \min \max_{x \in S} \{t \in E : |h_x(t)|, |h_x(-t)| \le \varepsilon/2\}$, δ is positive because S is compact and the restriction of h to S is continuous. Let e

be the evaluation map $e: H_0(E, E) \times E \to E$ and note that $id \times e \circ h$ maps (x, t) to $(x, h_x(t))$. The restriction of $\bar{\pi}$ to $S \times [-\delta, \delta]$ is defined by:

It is clear that the restriction of $id \times e \circ h$ to $S \times [-\delta, \delta]$ is an embedding into $S \times (-\varepsilon, \varepsilon)$, so S is a local section of extent δ under $(X, E, \bar{\pi})$. Q.E.D.

Differential systems. Given a locally lipschitzian function $f: E^N \rightarrow E^N$ we may define $\phi(t, y)$ to be the solution, at time t, to the equation $\dot{x} = f(x)$ with the condition $\phi(0, y) = y$. Then $\pi(x, t) = \phi(t, x)$ is a dynamical system map on E^N , since the solutions to $\dot{x} = f(x)$ depend continuously on initial data. We call a dynamical system arising in this way a differential system. It is easy to see that each nonrest point of a differential system on E^N has an (N-1)-cell local section that generates neighborhoods for it [4, pp. 37-46]. Theorem 1, together with Lemmas 1 and 2, implies that if (E^N, E, π) is a dynamical system which is either isomorphic or geometrically equivalent to a differential system, then each local section of (E^N, E, π) which generates neighborhoods for itself must be a classical (N-1)-manifold.

The example. Consider the example, due to Bing, of a nonmanifold $B \subset E^4$ such that there is a homeomorphism $h: B \times E \Rightarrow E^4$. In [2, Theorem 13] B is shown to have a cantor set of points where it is a nonmanifold, and in [1] the construction of h is accomplished. Let P_B , P_R be the respective projections of $B \times R$ onto B and onto R. We write the arguments of h as pairs in $B \times E$.

Let (E^4, E, π) be the system defined by

$$\pi(x, t) = h(P_B \circ h^{-1}(x), P_R \circ h^{-1}(x) + t).$$

THEOREM 2. (E^4, E, π) is a dynamical system, and $S \equiv h(B \times \{0\})$ is a local section which generates neighborhoods for itself.

PROOF. The proof is an easily accomplished verification.

COROLLARY. (E^4, E, π) is neither isomorphic to nor geometrically equivalent to a differential system on E^4 .

PROOF. The set S defined above is not a classical 3-manifold.

Question. Characterize topologically the dynamical systems which are differential systems.

REFERENCES

- 1. R. H. Bing, The cartesian product of a certain non-manifold and a line is E^4 , Ann. of Math. (2) 70 (1959), 399-412. MR 21 #5953.
- 2. ——, A decomposition of E⁸ into points and tame arcs such that the decomposition space is topologically different from E⁸, Ann. of Math. (2) 65 (1957), 484–500. MR 19, 1187.
- 3. O. Hajek, Dynamical systems in the plane, Academic Press, New York, 1968. MR 39 #1767.
 - 4. J. K. Hale, Ordinary differential equations, Wiley, New York, 1969.

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA 93940

Current address: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208