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1. The main result and some consequences. In 1956 E. Calabi [6] 
attacked the classification problem of compact euclidean space forms by 
means of a special construction, called the Calabi construction (see 
Wolf [14, p. 124]). Here we announce that the construction can be ex­
tended to compact riemannian manifolds whose Ricci curvature tensor 
is zero (Ricci flat). Of course, it is not known if there exist any Ricci 
flat nonflat compact riemannian manifolds, and in fact a search for such 
manifolds was the original motivation for our study. However, as a 
consequence of our extension of Calabi's result we reduce the question of 
existence of a compact nonflat Ricci flat manifold to the simply connected, 
connected case. In any case, we essentially reduce the construction of 
compact Ricci flat manifolds to the lower-dimensional case together 
with the case of first Betti number zero. 

As a further consequence of our construction we extend one of the 
Bieberbach theorems [4], [14, Theorem 3.3.1] from the flat to the Ricci 
flat case (Theorem 1.4) and give various sufficient topological conditions 
for a Ricci flat manifold to be flat. 

Our main result is the following: 

MAIN THEOREM 1.1. Let Mn be a compact connected Ricci flat 
riemannian n-manifold with first Betti number k=b1(M

n). Then there is 
a finite normal riemannian covering 

p:Tk x Mn~k -> Mn = Y\Tk x Mn~k 

where 
(1) Tk is a flat riemannian k-torus; 
(2) xF={(h((p), (p)\<p e $ } where O is a finite group of isometries of 

Mn~k, h is an injective homomorphism of O into the translation group of 
Tk (so Y acts freely and properly discontinuously on TkxMn~k); 
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(3) Mn~k is a compact connected Ricci flat riemannian {n—k)-manifold 
which has no nonzero ^-invariant parallel vector fields. 

Conversely, given Tk, Mn~k, and Y as above, Mn=Y\TkxMn~k is a 
compact Ricci flat connected riemannian n-manifold with first Betti number 
k. Mn is determined up to affine equivalence by (Mn~k, O, k). 

See §4 for an indication of the proof. 
Thus, modulo identifications by a finite group of isometries, it is pos­

sible to split off a flat ^-dimensional torus from a Ricci flat riemannian 
manifold. This reduces the affine classification of compact «-dimensional 
Ricci flat manifolds to 

(i) the classification in dimensions <n, 
(ii) the classification in dimension n with b1=0, and 

(iii) the classification of finite abelian groups O of isometries of compact 
Ricci flat manifolds Mn~k, 0^k<n, such that Mn~k has no nonzero 
O-invariant parallel vector fields. 

As a corollary we obtain the following result of Willmore [12], which 
generalizes the classical result [11] that in dimension ^ 3 every Ricci 
flat metric is flat. 

COROLLARY 1.2. Let M be a compact connected n-manifold. Suppose 
that b1{M)^.n—3, or that M has a finite topological covering 7T:M-+M 

with b1(J\})'^.n—3. Then every Ricci flat riemannian structure on M is flat. 

PROOF. Apply the theorem to M with the metric pulled back from M. 
Then Mn~k is a Ricci flat riemannian manifold of dimension < 3 and so is 
flat. 

Iterating the construction in the Main Theorem, we have 

COROLLARY 1.3. Let Mn be a compact connected Ricci flat riemannian 
n-manifold. Then there exists a series of finite normal riemannian coverings 

Tkr X Mn~kr —> Tkr~x X Mn~kr~1 —> • • • —> Tkl x Mn~kl —> Mn 

where è1(Mn)=A:1<fc2<, * '<kr, each Tki is a flat riemannian kçtorus, 
each Mn~ki is a compact connected Ricci flat riemannian {n—k ^-manifold, 
and è 1 ( M n - f c 0 = ^ + i - " ^ / ö r l ^ K r , and b^M^^O. 

One of the Bieberbach theorems ([4]; see [14, Theorem 3.3.1]), says that 
a compact euclidean space form admits a finite normal riemannian 
covering by a flat torus. We can extend this result to the Ricci flat case 
as follows : 

THEOREM 1.4. Let M be a compact connected Ricci flat riemannian 
manifold. Then there is a finite normal riemannian covering TxN-*M 
where T is a fiat riemannian torus, dim T^.bx{M), and N is a compact 
simply connected Ricci flat riemannian manifold. 
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The proof follows from a result of Cheeger and Gromoll ([7, Theorem 
3]) which reduces the proof to the case where l->(finite)-^r1(Af)-^Z*->l 
with k^b^M). In that case 7T1(M

n~k) is finite in the Main Theorem; let 
N be its universal cover. 

Thus if compact simply connected Ricci flat manifolds are flat, then 
compact Ricci flat manifolds are flat. Note also that if M is flat, then N 
reduces to a point so that the corollary specializes to the Bieberbach 
theorem for flat manifolds. 

Using this extension of the Bieberbach theorem, we can find some 
interesting sufficient topological conditions for Ricci flat manifolds to 
be flat. 

THEOREM 1.5. Let M be a compact connected Ricci flat n-dimensional 
riemannian manifold. Then the following are equivalent: 

1. M is flat. 
2. For k>l, the homotopy groups irk(M)=0. 
3. The universal covering of M is acyclic. 

Thus, for example, if a given compact manifold admits a flat riemannian 
metric it is covered by a torus, so that any Ricci flat riemannian metric is 
flat (see also Corollary 2.5). Thus a given compact manifold may either 
have flat riemannian structures, or nonflat Ricci flat riemannian structures, 
but not both. This remark is useful in studying some submanifolds of the 
space of riemannian metrics on a given compact manifold [8]. 

2. Riemannian manifolds with positive semidefinite Ricci curvature. 
We let r denote the Ricci tensor of the riemannian manifold M, 
%\\ = {X- VX=0} = {the parallel vector fields on M), and JP={X\AX=0}= 
{the harmonic vector fields on M) where A=dô+ôd is the Laplace-de 
Rham operator acting by duality on vector fields. 

Using classical results of Bochner ([5], [15, pp. 37, 39, 43]), it is 
straightforward to prove : 

THEOREM 2.1. Let M be a compact connected riemannian manifold 
with positive semidefinite Ricci tensor and with first Betti number b±(M). 
Then X\\=^ an^ ^ a central ideal of dimension bx{M) in the Lie algebra 
of all Killing vector fields on M. Further, X\\ defines a foliation of M by 
flat totally geodesic submanifolds of dimension bx(M). 

If M is Ricci flat, then X\\ is the Lie algebra of Killing vector fields on 
M, and I(M)°, the identity component of the isometry group, is a torus 
group T jof dimension bx(M). T acts effectively and smoothly on M, and the 
orbits of this action foliate M by flat totally geodesic riemannian b^Mytori. 

If M has Ricci tensor positive semidefinite, then we can extract some 
consequences concerning the Betti numbers bv(M) of M. 
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THEOREM 2.2. Let M be a compact connected n-dimensional riemannian 
manifold with positive semidefinite Ricci tensor and first Betti number 
bx(M)=k. Then 

b9{M) ^ ( k ) for p^k. 

Also, bx{M)^n, and b1(M)=n if and only if Mis aflat riemannian n—torus. 
If M is orientable, then b1{M)j£n—\. 

In [2, §8] and [3, §8], Berger shows that a Ricci flat variation of a flat 
riemannian metric remains flat. Using Theorem 2.2 and the same tech­
nique as used in Corollary 1.2, we show that the variation is not needed: 

THEOREM 2.3. Let M be a compact connected n-dimensional manifold. 
Suppose that M admits a finite topological covering TT:M->M with 
b1(M)=n. If g is a riemannian structure on M with positive semidefinite 
Ricci tensor, then (M, rr*g) is aflat riemannian torus and g is aflat rieman­
nian metric on M. 

Theorem 2.3 has a stronger topological hypothesis but weaker geo­
metrical hypothesis than Corollary 1.2. As a corollary we can strengthen 
the remark after Theorem 1.5. 

COROLLARY 2.5. If a compact manifold M admits a flat riemannian 
structure, then every riemannian structure with Ricci tensor positive semi-
definite is flat. 

3. An application to generalized nilmanifolds. See [13, §6] for the 
definitions of "nilmanifold" and "generalized nilmanifold". Using results 
from [1], from [13, §6], and from Theorem 2.2 above, we obtain the 
following strong extension of [13, Theorem 6.4]. 

THEOREM 3.1. Let M be a compact riemannian manifold with positive 
semidefinite Ricci tensor. Suppose that the underlying differentiable mani­
fold of M is homotopy-equivalent to a compact generalized nilmanifold. 
Then M is flat, i.e., is isometric to a compact euclidean space form. Also, 
the following conditions are equivalent', (i) M is a nilmanifold, (ii)7r1(M) 
is nilpotent, (iii) M is aflat riemannian torus. 

INDICATION OF PROOF. A result of L. Auslander [1] allows us to reduce 
the proof to the following case. We have a connected simply connected 
nilpotent Lie group N, a discrete uniform subgroup Y of N, and a homo­
topy equivalence ƒ :M-+T\N. It then follows from [13, Theorem 6.4] that 
M is diffeomorphic to a torus. Thus b1(M)=dimM, so Theorem 2.2 
says that M is a flat riemannian torus. 
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Euclidean space forms are generalized nilmanifolds. Thus 

COROLLARY 3.2. Let M be a compact riemannian manifold with 
positive semidefinite Ricci tensor. If M is homotopy equivalent to a compact 
euclidean space form, then M is flat. 

4. Sketch of proof of main theorem. Let n\Mn->Mn be the universal 
riemannian covering. The Z?1(Âfn)-dimensional torus group (Theorem 2.1) 
lifts to a real vector group Rk of ordinary translations along the euclidean 
factor of Mn. Thus Mn=EkxMn~k where Ek is an euclidean A>space, 
k=bx{M), and the ^-orbits are the Ekx{m} with meMn~k. Express 
Mn = Y\Mn where Tc:l(Mn). Every y eY respects the splitting in the 
sense y = (yl9 y2) with 7i £ I(Ek) and y2 e I(Mn~k). Rkr\T is a lattice in 
Rk and central in T, so each yx is an ordinary translation of Ek. 

Let A = {yeT:y2=:l} and B={y eT'.y^l}. View (AxB)czTc: 
( I \ X T2) where r i = { y i : y e V}. Since I \ is abelian, one has [ I \ V] c 1 x T2. 
Arguing from k=b1(M), one sees that (RknT)x [T2, T2] has finite 
index in I \ But A=RknT and [T2, r2]<=£c:r2 . Now AxB is anormal 
subgroup of finite index in Y. Define Tk=A\Ek, Mn-k=B\Ün~k and 
T = T \ ^ xi?. They turn out to have the required properties. 

The converse is straightforward. 
Further details of these and related results will appear in [9]. 
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