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Grothendieck asked in [3], Problem 2, p. 72 and in the remarks on p. 
39, whether every 1-absolutely summing operator between two Banach 
spaces can be factored through an Lx space. Theorem 2 announces the 
negative answer to this question. 

Corollaries 1 and 2 provide counterexamples to two other questions 
equivalent to Problem 2, and mentioned in [3] : Can every operator T, 
whose adjoint T' is 1-absolutely summing, be factored through a C(K) 
space? Is every operator which has the form UV, where U' and Vare both 
1-absolutely summing, an integral operator? 

Theorems 3 and 5 establish the existence of a sequence of finite-
dimensional Banach spaces which have the property that their uncon
ditional basis constants tend to infinity. This answers the question 
mentioned for example in [1] , [4] , [5], [7] and asked also by A. 
Pelczynski and H. P. Rosenthal. 

Part (5) of Theorem 4 settles a conjecture of McCarthy [8, p. 269] 
regarding the distance of ££(]L\, 1%) from the subspaces of lx. 

Theorem 5 answers Problem 2 [6] by proving that when 1 ^ p ^ 
2 ^ oo, Ma (see definition below) has no unconditional basis. 

Detailed proofs of these and other results will be given elsewhere. 
Let $£(F, F) denote the space of operators between two Banach spaces 

F and F.E ® a F denotes the completion under the a norm of the algebraic 
tensor product E ® F. In particular, l2 ® v /2, h ® A h anc* h ®a h a r e 

the spaces ofcompact, integral and Hilbert-Schmidt operators respectively, 
from 12 to /2. Here v and A denote the "least" and "greatest" cross-
norms respectively [3]. Other classes of operators considered here are: 

(1) Tlp(E, F)(l ^ p ^ oo), the space of p-absolutely summing operators 
from E to F equipped with the norm np [9]. 

(2) Ip(E, F), the space of p-integral operators from E to F equipped 
with the norm ip [10]. 

(3) Tp(E, F), the space of Lp-jactorizable operators from E to F, that is, 
T e Tp(E, F) if and only if T e i f (F, F) and there is a positive measure 
space (Q, X, ju) and A e <£(E, Lp(fx)), B e S£{Lp{\x), F") such that iT = BA, 
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where i:F -* F" is the canonical injection. Here yp{T) = inf ||^4|| \\B\\9 

taken over all possible (Q, £,/*) and factorizations A, B, is the norm 
associated with Tp(Ey F) [2]. 

The unconditional basis constant of a Banach space E is defined as 

X(E) = inf sup ||X>pcfeJ| / | | E * A | | 
{«ihei Ci= ±l ,Xi i e / H i e l 

where the supremum is taken over all the choices of signs st = ± 1 with 
8t = 1 for all but finitely many i, and over all vectors J \ e / x ^ in £, and 
the infimum ranges over all possible unconditional bases {ef}iej of E. 

For any ideal norm a ([2], [11]) and a Banach space is we set 
a(£) = a(7), where I is the identity operator on E. The distance between 
two isomorphic Banach spaces E and F is defined as 

4 ^ F ) = i n f | | T | | | | r - 1 | | , 

taken over all isomorphisms T from E onto F. 
Let M be the linear vector space of all matrices a = (at^vij = 1 ,2 ,3 , . . . , 

in which only a finite number of elements a(j is not zero. For 1 ^ p < oo 
and ae M define the norms 

Gp{a) = [tmcQ(aa*)p/2Y/p, 
and 

<jjfl) = max{£ ayXj^; X x? = £ > ƒ = 1}. 

Let Ma be the completion of M under the norm <xp [6], [8], and let 
M" be the subspace consisting of all as M for which au = 0 if 
max(i,j) > n. Ma is reflexive if 1 < p < oo; M'a = Ma where 
1/p + 1/q = 1. 

Finally, given two positive functions ƒ and # defined on the integers, we 
say that f(n) > g(n) if the sequence g(n)/f(n) is bounded, and if also 
g(n) > f(n) we then write f(ri) ~ g(ri). 

Our key to the proofs of the results mentioned here is the following 
theorem: 

THEOREM 1. Let Jn (respectively, In) be the natural inclusion of l2 ® A l2 

(respectively, \n
2®

y ln
2) to ln

2 ®
ff ln

2. Then 
(1) yAJÙ-nandnAJÙ-n1'2. 
(2) yAQ-nWandnAU-n. 

Let Xi0) = X and X(i\ i = 1,2, 3 , . . . , denote the ith adjoint of a Banach 
space X. Of course if X = l2 ® v /2 , thenX ( 1 ) = l2 ® A /2 ,X ( 2 ) = JSP(/2,/2), 
X(3) = if(/2 , /2X etc. Theorem 1 provides the following counterexamples 
to Problem 2 of [3, p. 72]: 

THEOREM 2. For eacA i = 0, 1, 2, . . . , f/*ere is a 1-absolutely summing 
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operator 7] mapping (/2 (g)v /2) (0 to l2 ®° l2 which does not factor through 
any Lx space. 

COROLLARY 1. For each i = 0, 1, 2, . . . , there is an operator 7] from 
h ®a h t0 (12 ® v ^) ( l ) whose adjoint T\ is \-absolutely summing, and yet 
7] does not factor through any C(S) space. 

COROLLARY 2. There is an operator of the form UV which is not 
1-integral, and yet both U' and V are 1-absolutely summing. 

THEOREM 3. Let \jp + Xjp' = 1 and 1/q + \/q' = 1. Then 

*(/£ ® v ln
P) = X(ln

p ® A /;) £ n1/2l if co ^q,p^29 

> ^ - 1 / 9 ; if p ^ l ^ q ^ h 

> « 1 _ 1 / p ; if ^ 2 ^ ^ i , 
^ „3/2-1/p-l / , . ,ƒ 2 ^ / 7 , ^ ^ 1. 

COROLLARY 3. If p, q > I, then lp®
A lq, and lq> ® v /p,, are «ÖJ 

isomorphic to any complemented subspace of a Banach space with an 
unconditional basis. 

REMARK. It was proved in [6] that if \jp + 1/q ^ 1 and 1 ^ /?, q < oo 
then /p ® v /̂  is not isomorphic to a subspace of a space with an un
conditional basis. Our approach therefore provides the other case as well 
with the weaker conclusion. 

COROLLARY 4. Let l ^ r , / ? ^ 2 < # ^ o o . Then Hr>(lq, lp) andlr(lp, lq) 
are not isomorphic to any complemented subspace of aBanach space with an 
unconditional basis. 

THEOREM 4. Let a = A or v , Ea = \\ <g)a ln
2 and I be the identity 

operator on Ea. Let cp'.L^jx) -+ Ea be any quotient map and i:Ea-+ L00(/i) 
be any isometric embedding. Then 

(1) n^EJ ~ ». 
(2) iJEx) ~ ». 
(3) y i(£ a) ~ n. 
(4) y2(£«) = V». 
(5) Inf {«*£., y); r c / , } ~ > . 
(6) Inf {^(w); u:Ea -+ L^/x) andcpu = ƒ} ~ #3/2. 
(7) Inf{||w||; w.LJ^p) -• Lx(p) and (pui = 1} ~ n3/2. 
(8) n^cp) ~ V». 
(9) Inf{d(EA, Y); Y c= /,} ~ Jn, if 1 ^ p < oo. 

THEOREM 5. For awy 1 ^ /? ^ oo, x (K p ) ~ « | 1 / p-1 / 2 1 . If p # 2, Mffp 

w «or isomorphic to a complemented subspace of a Banach space with an 
unconditional basis. 

file:///-absolutely
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REMARKS. It is possible to obtain stronger results by adding the follow
ing definition: A Banach space E is a t/A-space (k ^ 1) if given any finite-
dimensional subspace G ^ E, there is a closed subspace F,G £ F c E, 
a space U with an unconditional basis, and operators S e <$?(F, U)9 

Te£>(U, F) such that TS is the identity on F and ||S|| ||T|| *(£/) S A. 
Denote 

XU(E) = inf{A;2sisa L^-space}. 

Observe that in the definition U and F may vary with each choice of G 
and may be finite- or infinite-dimensional. All S£p spaces are L^-spaces for 
appropriate A's. Also %{E) ^ xu{E) for every E. We now have 

THEOREM 6. If A e Tl^E, F), f/œ/i ^ ( 4 ) g n^AftJiE). 

Our results imply that none of the spaces (lp <g) v /g)(0 (1 ^ p, q < oo, 
f = 0, 1, 2, . . . ), Map (1 ^ p 7̂  2 ^ oo) are [/^-spaces for any A, since 
on each of these spaces there is a 1-absolutely summing operator which 
does not factor through any Lx space. Moreover, the estimates of 
Theorems 3 and 5 remain the same if / is replaced by xM-
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