AUTOMORPHISM GROUPS OF PARTIAL ORDERS

BY ELLIOTT H. BIRD

Communicated by Gian-Carlo Rota, February 5, 1973

1. The automorphism group $\Gamma(P)$ of a partial order P is the collection of all order preserving permutations (automorphisms) of P, a subgroup of the symmetric group on P. If P and Q are partial orders then $P \times Q$ becomes a partial order by reverse lexicography: (p, q) < (p', q') if q < q' or q = q' and p < p'. If f is a function whose domain contains the element a, we use af to denote the image of a under f.

THEOREM 1. $\Gamma(P \times Q)$ contains an isomorphic copy of $\Gamma(P)$ wr $\Gamma(Q)$, a nonstandard wreath product of $\Gamma(P)$ by $\Gamma(Q)$.

PROOF. Let (b, f) be an element of $\Gamma(P)$ wr $\Gamma(Q)$, with $f: Q \to \Gamma(P)$ and $b \in \Gamma(Q)$, where $\Gamma(Q)$ may be identified with a subgroup of Aut $(\prod_{q \in Q} \Gamma(P))$. The action of b on f is defined by $q(fb) = (qb^{-1})f$. Define

$$\phi: \Gamma(P) \text{ wr } \Gamma(Q) \to \Gamma(P \times Q)$$

by

$$(p,q)[(b,f)\phi] = (p[qbf],qb).$$

It is not difficult to show that ϕ is an embedding.

DEFINITION. $\Gamma(P \times Q)$ is β -imprimitive if the sets $P \times \{q\}$, $q \in Q$, are sets of imprimitivity (i.e. if for all $\alpha \in \Gamma(P \times Q)$, $(p_1, q)\alpha = (p'_1, q')$ and $(p_2, q)\alpha = (p'_2, q'')$ implies q' = q'').

The author wishes to thank Jack Sonn for simplifying the proof of the sufficiency of the following theorem.

THEOREM 2. $\Gamma(P \times Q) \cong \Gamma(P)$ wr $\Gamma(Q)$ if and only if $\Gamma(P \times Q)$ is β -imprimitive.

PROOF. If ϕ is an isomorphism then every $\alpha \in \Gamma(P \times Q)$ behaves algebraically like one $(b, f) \in \Gamma(P)$ wr $\Gamma(Q)$, and β -imprimitivity follows from the definition of (b, f). Conversely, if $\Gamma(P \times Q)$ is β -imprimitive, then each $\alpha \in \Gamma(P \times Q)$ induces an $\alpha^* \in \Gamma(Q)$ and the mapping $\alpha \to \alpha^*$ is an epimorphism. It follows that the diagram

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 06A10; Secondary 05C25.

is commutative with exact rows and, by the five lemma, ϕ is an isomorphism.

THEOREM 3. If P is a partial order and P° is the partial order obtained by adjoining a universal lower bound to P, then $\Gamma(P^\circ) \cong \Gamma(P)$.

THEOREM 4. If P is a finite partial order with universal lower bound and Q is a finite partial order, then $\Gamma(P \times Q)$ is β -imprimitive.

The proof is by induction on h(q), h being the height function on $Q:h(q) = \sup\{\text{lengths of maximal subchains from } q_0 \text{ to } q\}$, where the supremum is taken over all minimal elements q_0 in Q, for which $q_0 \leq q$.

Theorem 4 tells us that, at least in the finite case, we can be certain that the automorphism group on $P \times Q$ is the wreath product $\Gamma(P)$ wr $\Gamma(Q)$ if only P has a universal lower bound, and if P does not, then by adjunction of a lower bound, that wreath product is obtained (Theorem 3). Details of the proofs may be found in [1] or [2].

2. Having obtained a wreath product it is natural to ask whether the standard wreath product can be obtained (as an automorphism group of a partial order). Given an arbitrary group A with a well-ordered generating system $\{a_j; j \in J\}$, Frucht [5] has shown there is a partial order Φ_A for which $\Gamma(\Phi_A) \cong A$. Namely $\Phi_A = A \times (2 + J)$ with

$$(a, i) < (a, j),$$
 $a \in A$ and $i < j < 2 + J,$
 $(a_i a, 1) < (a, 2 + j),$ $a \in A$ and $i \le j < 2 + J.$

Using Frucht orders Φ_A , Φ_B for two groups A and B, with generating systems of order types J, I, respectively, we next construct a partial order whose automorphism group is the standard wreath product $A \mid B$, and which is more economical than the Frucht order for $A \mid B$.

DEFINITION. A partial order P is called uniform if (i) every subset of P has minimal elements and (ii) if $p, p' \in P$ such that h(p) = h(p'), where h is the height function, then p and p' are in the same orbit of $\Gamma(P)$.

Note that the orbits of $\Gamma(P)$ are well-ordered; we denote the minimal orbit by Θ_P , or if no ambiguity can arise, by Θ . As an important example, Frucht orders are uniform.

DEFINITION. If P and Q are uniform partial orders, we define

$$P \left[Q = (P \times \Theta_Q) \cup (Q - \Theta_Q), \right]$$

with the order in $P \times \Theta_Q$ determined by that of P, the order in $Q - \Theta_Q$ remaining unchanged, and (p, r) < q if r < q in Q.

While $P \mid Q$ is a uniform partial order, it is not in general true that $\Gamma(P \mid Q)$ is a wreath product. However, if P is a Frucht order, we do obtain a wreath product, and if Q, too, is a Frucht order, a standard wreath

1012

product is obtained. We prove the latter first.

THEOREM 5. $\Gamma(\Phi_A \mid \Phi_B) \cong A \mid B$.

PROOF. Major steps in the proof are listed here. We use λ generically to denote an element of $W = \Gamma(\Phi_A \mid \Phi_B)$. Note that a typical element of $\Phi_A \mid \Phi_B$ has the form ((a, j), (b, 1)), where $j < J, a \in A, b \in B$, if it belongs to $\Phi_A \times \Theta_B$ and the form (b, i), where $b \in B$ and 1 < i < I if it belongs to $\Phi_B - \Theta_B$, and where $\Theta_B = B \times \{1\}$ is the minimal orbit of Φ_B .

(i) If $((e, 1), (b, 1))\lambda = ((a, 1), (b', 1))$, where $e = e_A$ is the identity of A, a is in A, b and b' in B, then $((g, j), (b, 1))\lambda = ((ga, j), (b', 1))$ for all j < 2 + J and all g in A, and $(b, i)\lambda = (b', i)$ for all i with 1 < i < 2 + I.

(ii) $K = \{k \in W; (k \mid \Phi_A \times \Theta_B)\pi_1 = \pi_1\}$, where π_1 is the projection on the first component, is a subgroup of W isomorphic to B.

(iii) $F = \{ f \in W; (f \mid \Phi_A \times \Theta_B) \pi_2 = \pi_2 \}$ is a normal subgroup of W isomorphic to $\prod_{b \in B} A_b$, where $A_b \cong A$ for each b in B.

(iv) W is a semidirect product of F by K, and so is (isomorphic to) a semidirect product of $\prod_{h} A$ and B.

(v) The mapping $\alpha: K \to \operatorname{Aut}(F)$ defined by $f(k\alpha) = k^{-1}fk$ is an embedding.

Hence $W = \Gamma(\Phi_A \mid \Phi_B)$ is the relative holomorph of $\prod_b A$ by B, i.e. the standard wreath product of A by B. We point out that the groups $\Gamma(\Phi_A \mid \Phi_B)$ and $A \mid B$ are not isomorphic as permutation groups, but only as groups.

COROLLARY. For $\lambda \in \Gamma(\Phi_A \setminus \Phi_B)$, λ induces a map $\lambda^* \in \Gamma(\Phi_B)$ such that $\lambda^* \mid \Phi_B - \Theta_B = \lambda \mid \Phi_B - \Theta_B$. The mapping $\lambda \to \lambda^*$ is an epimorphism.

The proof of the next theorem mimics that of the preceding one. Here only one of the uniform partial orders is a Frucht representation.

THEOREM 6. Let Q be a uniform partial order. Let A be a group with Frucht representation Φ_A . Then the automorphism group of $\Phi_A \mid Q$ is a wreath product (in general, nonstandard) of A by $\Gamma(Q)$.

Observe that $\Gamma(\Phi_A \setminus Q)$ is a standard wreath product if and only if $\Gamma(Q)$ is isomorphic as a permutation group on Θ_Q to a Cayley representation. Details of the proofs of Theorems 5 and 6 may be found in [1] or [3].

3. DEFINITION. Let A be a group and P a uniform partial order with minimal orbit Θ such that $\Gamma(P) \cong A$. A group B is said to be obtainable from A if there exist a nonempty set S and a surjection $f: \Theta \to S$ such that if $Q = P \cup S$ with p > s if and only if f(p) = s, for p in P and s in S, then $\Gamma(Q) \cong B$.

What is being done here is that a new family of minimal orbits is adjoined to a uniform partial order with each member of the original

1013

1973]

minimal orbit having a unique predecessor. (Note that the resulting order need not be uniform.) We will write the image of p in Θ under f as f(p) contrary to our usual notation.

THEOREM 7. If B is obtainable from A, then B is embedded as a subgroup of A and if $|A| \neq 2$, then every subgroup of A is obtainable from A.

PROOF. If B is obtainable from A, then identifying A with $\Gamma(P)$ and B with $\Gamma(Q)$, the mapping $\psi: B \to A$ defined by $b\psi = b \mid P$, the restriction of b to P, is an embedding.

Conversely, let B be a subgroup of A and Φ_A the Frucht representation of A. Let $S = \{A - B\} \cup B$; i.e. the elements of S are the points of B and the set A - B. Define $f: A \times \{1\} \to S$ by f(a, 1) = a if $a \in B$, and f(a, 1) = A - B if $a \notin B$. If $Q = \Phi_A \cup S$ with (a, 1) > f(a, 1), then $\Gamma(Q) \cong B$. In particular, $\psi: \Gamma(Q) \to A$ defined as above is an isomorphism of $\Gamma(Q)$ onto $B \subseteq A$.

4. A theorem of Kaloujnine and Krasner [6] states that every extension of A by B can be found embedded in $A \downarrow B$. Using Theorems 5 and 6 we indicate here a natural way of producing partial order representations for those extensions which are split, i.e. for the semidirect products of A by B.

Specifically, if $\Phi_A \ Delta \Phi_B$ is the wreath product representation of $A \ Delta B$ and D = BA is a semidirect product of A by B with homomorphism α , we let S = A and $f: \Theta \to S$ by $f((a, 1), (b, 1)) = a(b\alpha)$, where

$$\Theta = (A \times \{1\}) \times (B \times \{1\})$$

is the minimal orbit of $\Phi_A \ Delta \Phi_B$. We have $\alpha: B \to \operatorname{Aut}(A)$, and S and f define a new partial order Q as in the definition of "obtainable". From Theorem 6, the automorphism group of Q is (isomorphic to) a subgroup of the automorphism group of $\Phi_A \ Delta \Phi_B$, that is a subgroup of A $\ Delta$. We show next that the new automorphism group is isomorphic to D.

THEOREM 8. Let D be a semidirect product of A by B with homomorphism α . Let Φ_A and Φ_B be the Frucht orders of A and B respectively. Let $Q = \Phi_A \setminus \Phi_B \cup A$ with $((a, 1), (b, 1)) > a(b\alpha)$. Then $\Gamma = \Gamma(Q) \cong D$.

The proof is accomplished in a series of steps showing that (1) Γ is (isomorphic to) a subgroup of $A \int B$; (2) for $\rho \in \Gamma$, if $((e_A, 1), (e_B, 1))\rho =$ ((y, 1), (z, 1)), where e_A , e_B are the identities of A, B respectively, $y \in A$, $z \in B$, and if $a_0 = y(z\alpha)$, then $e_A\rho = y(z\alpha) = a_0$ and $a\rho = a(z\alpha)a_0$ for every a in A; (3) if $((a, 1), (b, 1))\rho = ((a', 1), (b', 1))$, where a, a' are in A and b, b' are in B, then $a' = a[a_0(b'^{-1}\alpha)]$ and $(b^{-1}b')\alpha = z\alpha$; (4) A is embedded as a normal subgroup of Γ and B as a subgroup of Γ ; and finally (5) $\Gamma \cong BA = D$.

1014

5. Having constructed a partial order Q whose automorphism group is the semidirect product of A by B, we next consider the behavior of the automorphism group of Q when we modify Q by procedures similar to those used in constructing Q itself. Details of the proofs of the following theorem and the preceding one may be found in [1] or [4].

THEOREM 9. Let D be a semidirect product of A by B with homomorphism α (α : B \rightarrow Aut(A)), and let Q be the partial order representation of D constructed in Theorem 8. Let C be a group with Frucht representation Φ_C , β : A \rightarrow Aut(C) a homomorphism, and $P = C \cup \Phi_C \mid Q$ with ((c, 1), a) > c(a β). Then if $\Gamma = \Gamma(P)$, we have $\Gamma \cong \overline{B}AC$, where $\overline{B} = \{b \in B; (b\alpha)\beta = \beta\}$ is a subgroup of B with $(b_1a_1c_1)(b_2a_2c_2)$ given by

 $(b_1a_1c_1)(b_2a_2c_2) = b_1b_2(a_1(b_2\alpha))a_2(c_1(a_2\beta))c_2.$

6. Acknowledgement. The author wishes to thank David Lubell for guidance in the developments of the contents of this paper.

References

1. E. H. Bird, Automorphism groups of partial orders, Ph.D. Dissertation, Adelphi University, Garden City, N.Y., 1972.

2. ——, The automorphism group of a product of partial orders, Discrete Math. (to appear).

3. ——, A partial order representation of the standard wreath product, Discrete Math. (to appear).

4. ——, A partial order representation of the semi-direct product, Discrete Math. (to appear).

5. R. Frucht, On the construction of partially ordered systems with a given group of automorphisms, Amer. J. Math. 72 (1950), 195–199. MR 11, 320.

6. M. Krasner and L. Kaloujnine, Produit complet des groupes de permutations et le problème d'extension des groupes. III, Acta Sci. Math. Szeged. **14** (1951), 69–82. MR **14**, 242.

DEPARTMENT OF MATHEMATICS, LONG ISLAND UNIVERSITY, C. W. POST COLLEGE, GREENVALE, NEW YORK 11548