DUALITY IN CROSSED PRODUCTS AND VON NEUMANN ALGEBRAS OF TYPE III ## BY MASAMICHI TAKESAKI Communicated by Jacob Feldman, December 1, 1972 In this paper, we announce further results succeeding to the previous papers [2] and [3]. Suppose \mathscr{M} is a von Neumann algebra and G an abelian locally compact group. Let $\sigma:t\in G\to\sigma_t\in \operatorname{Aut}(\mathscr{M})$ be a continuous homomorphism in the sense that for each $x\in\mathscr{M}$, the map: $t\in R\to\sigma_t(x)\in\mathscr{M}$ is σ -weakly continuous. We construct the crossed product $\mathscr{M}\otimes_{\sigma}G$ of \mathscr{M} by G with respect to σ . In [2], we have shown that there is a canonical dual action θ of the dual group \widehat{G} on $\mathscr{M}\otimes_{\sigma}G$ so that $(\mathscr{M}\otimes_{\sigma}G)\otimes_{\theta}\widehat{G}\cong\mathscr{M}\otimes\mathscr{L}(L^2(G))$, where $\mathscr{L}(L^2(G))$ means, of course, the algebra of all bounded operators on the Hilbert space $L^2(G)$ of all square integrable functions on G with respect to the Haar measure of G. THEOREM 1. (i) If H is a closed subgroup of G, then $\mathcal{M} \otimes_{\sigma} H$ is canonically imbedded in $\mathcal{M} \otimes_{\sigma} G$ and $\{p \in \hat{G} : \theta_p(x) = x \text{ for every } x \in \mathcal{M} \otimes_{\sigma} H\}$ is precisely the annihilator H^{\perp} of H. (ii) If \hat{H} is a closed subgroup of \hat{G} , then the fixed point subalgebra $(\mathcal{M} \otimes_{\sigma} G)^{\hat{H}}$ of $\mathcal{M} \otimes_{\sigma} G$ under $\theta(\hat{H})$ is precisely $\mathcal{M} \otimes_{\sigma} H$, with H the annihilator \hat{H}^{\perp} of \hat{H} in G. We apply this theorem to the structure of von Neumann algebras of type III. In [3], we showed that for a von Neumann algebra \mathcal{M} of type III, there exists uniquely a semifinite von Neumann algebra \mathcal{M}_0 equipped with a one parameter automorphism group $\{\theta_t\}$ such that $\mathcal{M} \cong \mathcal{M}_0 \otimes_{\theta} \mathbf{R}$ and the action σ_t of \mathbf{R} on \mathcal{M} , which is dual to θ_t , is the modular automorphism group associated with the faithful semifinite normal weight φ which is canonically constructed from a trace τ on \mathcal{M}_0 with $\tau \cdot \theta_t = e^t \tau$, $t \in \mathbf{R}$. The above theorem implies immediately the following result. COROLLARY 2. Imbedding canonically \mathcal{M}_0 into $\mathcal{M} = \mathcal{M}_0 \otimes_{\theta} \mathbf{R}$, \mathcal{M}_0 is precisely the centralizer of the weight φ . COROLLARY 3. The center \mathcal{L} of \mathcal{M} is precisely the fixed point subalgebra of the center \mathcal{L}_0 of \mathcal{M}_0 under the action $\{\theta_t: t \in \mathbf{R}\}$. We now consider a factor \mathcal{M} of type III with separable predual \mathcal{M}_* . Making use of measure theoretic arguments, which are partly due to AMS (MOS) subject classifications (1970). Primary 46L10. H. A. Dye, we can show the following: Theorem 4. If \mathcal{M} is a factor of type III with separable predual \mathcal{M}_* , then \mathcal{M}_0 must be of type II $_{\infty}$. Making use of further ergodic theory type arguments, which we owe partly to T. Liggett, we can show the following: THEOREM 5. If \mathcal{M} is a factor of type III with separable predual, for \mathcal{M} to be of type III₁ in the sense of Connes (i.e., $S(\mathcal{M}) = \mathbf{R}_+$) it is necessary and sufficient that \mathcal{M}_0 is a factor of type II_{∞}. COROLLARY 6. If \mathcal{M} is a factor of type III_1 with separable predual, then for T>0 the crossed product $\mathcal{M}\otimes_{\varphi}(T\mathbf{Z})$ of \mathcal{M} by the closed subgroup $T\mathbf{Z}$ of \mathbf{R} with respect to the modular automorphism group σ_t^{φ} associated with a faithful semifinite normal weight φ is a factor of type III_{κ} with $\kappa=e^{-2\pi/T}$. ## REFERENCES - 1. A. Connes, Une classification de facteurs de type. III (to appear). - 2. M. Takesaki, Dualité dans les produits croisés des algèbres de vom Neumann (to appear). - 3. ——, Algèbres de von Neumann proprement infinies et produits croisés, C.R. Acad. Sci. Paris, Ser A 276 (1973), 125–127. Department of Mathematics, University of California, Los Angeles, California 90024