DUALITY IN CROSSED PRODUCTS AND VON NEUMANN ALGEBRAS OF TYPE III

BY MASAMICHI TAKESAKI

Communicated by Jacob Feldman, December 1, 1972

In this paper, we announce further results succeeding to the previous papers [2] and [3]. Suppose \mathscr{M} is a von Neumann algebra and G an abelian locally compact group. Let $\sigma:t\in G\to\sigma_t\in \operatorname{Aut}(\mathscr{M})$ be a continuous homomorphism in the sense that for each $x\in\mathscr{M}$, the map: $t\in R\to\sigma_t(x)\in\mathscr{M}$ is σ -weakly continuous. We construct the crossed product $\mathscr{M}\otimes_{\sigma}G$ of \mathscr{M} by G with respect to σ . In [2], we have shown that there is a canonical dual action θ of the dual group \widehat{G} on $\mathscr{M}\otimes_{\sigma}G$ so that $(\mathscr{M}\otimes_{\sigma}G)\otimes_{\theta}\widehat{G}\cong\mathscr{M}\otimes\mathscr{L}(L^2(G))$, where $\mathscr{L}(L^2(G))$ means, of course, the algebra of all bounded operators on the Hilbert space $L^2(G)$ of all square integrable functions on G with respect to the Haar measure of G.

THEOREM 1. (i) If H is a closed subgroup of G, then $\mathcal{M} \otimes_{\sigma} H$ is canonically imbedded in $\mathcal{M} \otimes_{\sigma} G$ and $\{p \in \hat{G} : \theta_p(x) = x \text{ for every } x \in \mathcal{M} \otimes_{\sigma} H\}$ is precisely the annihilator H^{\perp} of H.

(ii) If \hat{H} is a closed subgroup of \hat{G} , then the fixed point subalgebra $(\mathcal{M} \otimes_{\sigma} G)^{\hat{H}}$ of $\mathcal{M} \otimes_{\sigma} G$ under $\theta(\hat{H})$ is precisely $\mathcal{M} \otimes_{\sigma} H$, with H the annihilator \hat{H}^{\perp} of \hat{H} in G.

We apply this theorem to the structure of von Neumann algebras of type III. In [3], we showed that for a von Neumann algebra \mathcal{M} of type III, there exists uniquely a semifinite von Neumann algebra \mathcal{M}_0 equipped with a one parameter automorphism group $\{\theta_t\}$ such that $\mathcal{M} \cong \mathcal{M}_0 \otimes_{\theta} \mathbf{R}$ and the action σ_t of \mathbf{R} on \mathcal{M} , which is dual to θ_t , is the modular automorphism group associated with the faithful semifinite normal weight φ which is canonically constructed from a trace τ on \mathcal{M}_0 with $\tau \cdot \theta_t = e^t \tau$, $t \in \mathbf{R}$. The above theorem implies immediately the following result.

COROLLARY 2. Imbedding canonically \mathcal{M}_0 into $\mathcal{M} = \mathcal{M}_0 \otimes_{\theta} \mathbf{R}$, \mathcal{M}_0 is precisely the centralizer of the weight φ .

COROLLARY 3. The center \mathcal{L} of \mathcal{M} is precisely the fixed point subalgebra of the center \mathcal{L}_0 of \mathcal{M}_0 under the action $\{\theta_t: t \in \mathbf{R}\}$.

We now consider a factor \mathcal{M} of type III with separable predual \mathcal{M}_* . Making use of measure theoretic arguments, which are partly due to

AMS (MOS) subject classifications (1970). Primary 46L10.

H. A. Dye, we can show the following:

Theorem 4. If \mathcal{M} is a factor of type III with separable predual \mathcal{M}_* , then \mathcal{M}_0 must be of type II $_{\infty}$.

Making use of further ergodic theory type arguments, which we owe partly to T. Liggett, we can show the following:

THEOREM 5. If \mathcal{M} is a factor of type III with separable predual, for \mathcal{M} to be of type III₁ in the sense of Connes (i.e., $S(\mathcal{M}) = \mathbf{R}_+$) it is necessary and sufficient that \mathcal{M}_0 is a factor of type II_{∞}.

COROLLARY 6. If \mathcal{M} is a factor of type III_1 with separable predual, then for T>0 the crossed product $\mathcal{M}\otimes_{\varphi}(T\mathbf{Z})$ of \mathcal{M} by the closed subgroup $T\mathbf{Z}$ of \mathbf{R} with respect to the modular automorphism group σ_t^{φ} associated with a faithful semifinite normal weight φ is a factor of type III_{κ} with $\kappa=e^{-2\pi/T}$.

REFERENCES

- 1. A. Connes, Une classification de facteurs de type. III (to appear).
- 2. M. Takesaki, Dualité dans les produits croisés des algèbres de vom Neumann (to appear).
- 3. ——, Algèbres de von Neumann proprement infinies et produits croisés, C.R. Acad. Sci. Paris, Ser A 276 (1973), 125–127.

Department of Mathematics, University of California, Los Angeles, California 90024