INCIDENCE ALGEBRAS AS ALGEBRAS OF ENDOMORPHISMS

BY WILLIAM GRAVES AND SUZANNE MOLNAR

Communicated by Gian-Carlo Rota, December 18, 1972

1. Introduction. The order filters on a locally finite partially ordered set P constitute the open sets for a topology on P. A sheaf of abelian topological groups will be constructed on the topological space P, and the endomorphism ring of this sheaf will be proved isomorphic to the incidence algebra of P (over Z).

2. A sheaf of abelian groups on P. Let P be a locally finite (every interval [x, y] of P is finite) partially ordered set. An (order) filter on P is a subset V of P which contains y whenever $x \leq y$ and $x \in V$. For $x \in P$,

$$V_x = \{ y \in P \colon x \le y \}$$

is the principal filter generated by x. The filters on P are easily seen to be the open sets for a topology on P, and the increasing maps from P to another locally finite partially ordered set Q are precisely the continuous functions from P to Q [5].

For each filter V on P, let M(P, V), or simply M(V) when reference to P is understood, denote the free abelian group on V. For filters $U \subseteq V$, let $r(V, U): M(V) \rightarrow M(U)$ be the group homomorphism determined by

$$\begin{array}{ll} x \mapsto x & \text{if } x \in U, \\ x \mapsto 0 & \text{if } x \notin U, \end{array}$$

for $x \in V$.

PROPOSITION 1. M (with the restriction maps r(V, U)) is a sheaf of abelian groups on P.

PROOF. M is easily seen to be a presheaf of abelian groups. For any open cover $V = (\bigcup V_i, \text{ consider})$

$$M(V) \xrightarrow{\pi} \prod M(V_i) \xrightarrow{\pi_1}_{\pi_2} \prod M(V_k \cap V_j)$$

where π is induced by the restrictions $r(V, V_i)$, π_1 is induced by the restrictions $r(V_k, V_k \cap V_j)$, and π_2 is induced by the restrictions $r(V_j, V_k \cap V_j)$. That π is injective is clear. Let $\alpha = (\alpha_i) \in \prod M(V_i)$ where $\alpha_i = \sum \alpha_{i,x} x$, and suppose that $\pi_1(\alpha) = \pi_2(\alpha)$. Then $\alpha_{k,x} = \alpha_{j,x}$ for any $x \in V_k \cap V_j$. So

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 06A10; Secondary 18F20.

 $\pi(\beta) = \alpha$ where $\beta = \sum \beta_x x$ and $\beta_x = \alpha_{i,x}$ for any *i* such that $x \in V_i$. Hence, *M* is a sheaf.

For each filter V of P, let A(V) be the commutative ring with basis V of orthogonal idempotents. So A(V) = M(V) as abelian groups, and A(P) is the Möbius algebra (over Z) studied in [2], [3], [4], [7], and [8]. It is easy to see that the restriction maps introduced above are ring homomorphisms.

COROLLARY 1. A (with the restriction maps r(V, U)) is a sheaf of rings on P.

An endomorphism, T, of the sheaf M is a natural transformation of M considered as a contravariant functor. That is, $T = \{T(V)\}$ consists of group homomorphisms $T(V): M(V) \rightarrow M(V)$, one for each filter V on P, which commute with the restriction maps r(V, U).

If $x \leq y$ in P, then $r(P, V_x)(y) = 0$. So if $T(P)(y) = \sum T(P)(x, y)x$, then it follows from $r(P, V_x) \circ T(P) = T(V_x) \circ r(P, V_x)$ that T(P)(x, y) = 0 if $x \leq y$. It now follows easily that

THEOREM 1. The association $T \mapsto T(P)$ is an injective ring homomorphism of the endomorphism ring, End(M), of the sheaf M to the incidence algebra, $\mathcal{I}(P)$, of P (over Z).

P is lower finite if for each $y \in P$, the set $\{x \in P : x \leq y\}$ is finite.

COROLLARY 2. End(M) $\simeq \mathscr{I}(P)$ if and only if P is lower finite.

3. A topology on M(P). Subsets S of P satisfying

(*)
$$\{x \leq y : x \notin S\}$$
 is finite for every $y \in P$

will be called (*)-sets. In particular, every cofinite subset of P is a (*)-set. For each (*)-set S, let N(S) be the subgroup of M(P) generated by S. Since $S \cap R$ is a (*)-set whenever both of S and R are, $N(S) \cap N(R) = N(S \cap R)$. So the collection $\mathscr{B} = \{N(S): S \text{ is a (*)-set}\}$ is a base for a filter of neighborhoods of 0 determining the structure of abelian topological group on M(P) [1, III. 1.2].

PROPOSITION 2. This topology on M(P) is discrete if and only if P is lower finite.

PROOF. This topology on M(P) is discrete if and only if $\{0\} \in \mathcal{B}$ if and only if \emptyset is a (*)-set if and only if P is lower finite.

PROPOSITION 3. This topology on M(P) is Hausdorff.

PROOF. For $x \in P$, let $S_x = P - \{x\}$. Then S_x is a (*)-set, and $\bigcap N(S_x) = \{0\}$.

816

A subset R of P is said to be bounded above finitely provided there exists a finite subset F of P such that $x \in R$ implies $x \leq y$ for some $y \in F$.

PROPOSITION 4. P is bounded above finitely if and only if every (*)-set is cofinite.

PROOF. Suppose P is bounded above finitely by the finite subset F. For each (*)-set S and each $y \in F$, the set $\{x \leq y : x \notin S\}$ must be finite. Hence, S is the complement of a finite subset of P.

Conversely, assume that every (*)-set is cofinite. Then V_x is finite for every $x \in P$ since by local finiteness the complement of V_x is a (*)-set. So P is upper finite and admits an antichain U such that for every $x \in P$ there exists $y \in U$ with $x \leq y$. But the complement of U is a (*)-set. Hence U is finite.

Let $\hat{M}(P)$ be the completion of M(P) as abelian topological group. The summability [1, III. 5.2] in $\hat{M}(P)$ of families $\{\alpha_x x : x \in P, \alpha_x \in \mathbb{Z}\}$ will be discussed.

THEOREM 2. If $\{x : \alpha_x \neq 0\}$ is bounded above finitely, then $\sum \alpha_x x$ exists in $\hat{M}(P)$.

PROOF. Let $R = \{x : \alpha_x \neq 0\}$. It suffices [1, III. 5.2] to find, for every (*)-set S, a finite subset J of R such that $R - J \subseteq S$. But there is a finite subset F of P such that $x \in R$ implies $x \leq y$ for some $y \in F$. Set

$$J = \{x \in R : x \notin S\}$$

which is finite since, for each $y \in F$, $\{x \leq y : x \notin S\}$ is finite.

PROPOSITION 5. If $\sum \alpha_x x$ exists in $\hat{M}(P)$, then for each $y \in P$ there are at most finitely many $x \ge y$ with $\alpha_x \ne 0$.

PROOF. For each $y \in P$, the complement of V_y is a (*)-set.

The converse to Proposition 5 is not true. Let N denote the negative integers in their natural order. For each positive integer i, let $P_i = N$, and let P be the disjoint union of $\{P_i\}$ with the induced order. That is, P is the coproduct in the category of partially ordered sets and increasing maps of the family $\{P_i\}$. For each $x \in P$, let α_x be 1 or 0 according as $x = -1 \in P_i$ for some i or not. Then for each $y \in P$ there is exactly one $x \in P$ with $x \ge y$ and $\alpha_x \ne 0$. But $\sum \alpha_x x$ does not converge since

$$\{x \in P : x \leq -2 \text{ in some } P_i\}$$

is a (*)-set which does not meet $\{x \in P : \alpha_x \neq 0\}$.

CONJECTURE. $\sum \alpha_x x$ exists if and only if $\{x : \alpha_x \neq 0\}$ is bounded above finitely.

Let $\tilde{M}(P)$ be the subgroup of $\hat{M}(P)$ consisting of all sums of all families $\{\alpha_x x : x \in P, \alpha_x \in \mathbb{Z}\}$ such that $\{x : \alpha_x \neq 0\}$ is bounded above finitely. So $M(P) \subseteq \tilde{M}(P) \subseteq \hat{M}(P)$, and, for example, $\sum_{x \leq y} x$ is in $\tilde{M}(P)$ for each $y \in P$.

4. A sheaf of abelian topological groups on P. For each filter V on P, M(V) is a subgroup of M(P) and is therefore an abelian topological group (with the subspace topology). Let $\hat{M}(V)$, $\tilde{M}(V)$ be the closures of M(V)in $\hat{M}(P)$, $\tilde{M}(P)$ respectively. It is easy to see that the restriction maps r(V, U) are continuous (in fact, they are strict morphisms, [1, III. 2.8]). Hence, there are induced restriction maps $\tilde{r}(V, U): \tilde{M}(V) \to \tilde{M}(U)$ for filters $U \subseteq V$ on P. It follows that

PROPOSITION 6. \tilde{M} (with the restriction maps $\tilde{r}(V, U)$) is a sheaf of abelian topological groups on P.

Let $T \in \mathscr{I}(P)$. Consider the association $\sum \alpha_y y \to \sum \alpha_y T(x, y)x$. Since $\sum \alpha_y y = 0$ implies $\alpha_y = 0$ for all y, this association defines a map

$$\tilde{T}: \tilde{M}(P) \to \tilde{M}(P).$$

 \tilde{T} is a group homomorphism. To show that \tilde{T} is continuous, it suffices to show that for any (*)-set S there exists a (*)-set S' such that $\tilde{T}(x) \in \tilde{N}(S)$ for every $x \in S'$ ($\tilde{N}(S)$ is the closure of N(S) in $\tilde{M}(P)$). But the set $S' = \{s \in S : x \leq s \text{ implies } x \in S\}$ is a (*)-set (by local finiteness) satisfying this condition. From Theorem 1 and topological considerations it then follows that

THEOREM 2. The incidence algebra, $\mathscr{I}(P)$, of P (over Z) is isomorphic to $\operatorname{End}(\tilde{M})$, the endomorphism ring of the sheaf \tilde{M} of abelian topological groups on P.

5. Increasing maps and maps of sheaves. Consider the category whose objects are locally finite partially ordered sets P along with the sheaf $\tilde{M} = \tilde{M}(P, \cdot)$ of abelian topological groups on P and whose morphisms are continuous maps $f: P \to Q$ (continuous = increasing) along with a morphism \tilde{f} of the sheaf $\tilde{M}(Q, \cdot)$ on Q to the sheaf $\tilde{M}(P, \cdot) \circ f^{-1}$ on Q. So, for the increasing map $f: P \to Q$ and each filter V on Q,

$$\tilde{f}(V): \tilde{M}(Q, V) \to \tilde{M}(P, f^{-1}(V))$$

is a continuous group homomorphism, and these maps commute with the restriction maps $\tilde{r}(V, U)$ for filters $U \subseteq V$ on Q. In particular, for an increasing map $f: P \to Q$ such that, for each $q \in Q$, $\{p \in P: f(p) = q\}$ is bounded above finitely, \tilde{f} can be defined as follows: for each filter V on Q,

$$\tilde{f}(V): \tilde{M}(Q, V) \to \tilde{M}(P, f^{-1}(V))$$

is determined by $q \mapsto \sum_{f(p)=q} p$ for $q \in V$. Many of the results concerning Möbius inversion admit simple proofs in this setting. For example, the following result due to Rota [6] has been elegantly proved by Greene [4] in its finite form in the context of the Möbius algebra and here is proved in its most general form using only the continuous linearity of \tilde{f} .

THEOREM 3 (ROTA). Let $\sigma: P \to Q, \tau: Q \to P$ be increasing maps of locally finite partially ordered sets satisfying

(1) $\tau(\sigma(p)) \ge p$ for all $p \in P$; (2) $\sigma(\tau(q)) \le q$ for all $q \in Q$. Then for $p \in P$ and $q \in Q$ with $\sigma(p) \le q$,

$$\sum_{\substack{p \le x; \sigma(x) = q}} \mu(P)(p, x) = \sum_{\substack{y \le q; \tau(y) = p}} \mu(Q)(y, q) \quad if \tau(\sigma(p)) = p,$$
$$= 0 \qquad \qquad if \tau(\sigma(p)) > p.$$

PROOF. Here, $\mu(P)$ denotes the Möbius function of $\mathscr{I}(P)$; that is, the (continuous) inverse of the continuous linear automorphism of $\widetilde{M}(P)$ determined by $p \mapsto \delta(P, p) = \sum_{x \leq p} x$ and denoted $\zeta(P)$ (the zeta function of P). Hence,

(1)
$$p = \sum_{x \leq p} \mu(P)(x, p)\delta(P, x).$$

Since $\sigma(x) \leq y$ if and only if $x \leq \tau(y)$, it follows that $\tilde{\sigma}(\delta(Q, q)) = \delta(P, \tau(q))$ for any $q \in Q$ where $\tilde{\sigma} = \tilde{\sigma}(P)$. So from (1),

$$\tilde{\sigma}(q) = \sum_{y \leq q} \mu(Q)(y, q) \delta(P, \tau(y)).$$

But from definition of $\tilde{\sigma}$ and (1),

$$\tilde{\sigma}(q) = \sum_{p \leq x; \sigma(x) = q} \mu(P)(p, x) \delta(P, p).$$

The theorem follows from comparison of the coefficients of $\delta(P, p)$ in each of these expressions for $\tilde{\sigma}(q)$.

6. **Remarks.** Local finiteness was used only in Proposition 4 and was given only to shed light on the concept of (*)-set and the related conjecture on summability. So the construction of the sheaf M does not depend on local finiteness. This suggests letting $End(\tilde{M})$ be the incidence algebra of an arbitrary partially ordered set. This definition and a more detailed account of the results given here will appear later.

The subgroups N(S), S a (*)-set, of M(P) are ideals of the Möbius algebra structure A(P) on M(P). Thus, \tilde{M} can be considered as a sheaf \tilde{A} of topological rings, and $\tilde{A}(P)$ is a continuous generalization of the Möbius algebra construction (over Z).

References

N. Bourbaki, Elements of mathematics. General topology, Addison-Wesley and Hermann, Paris, 1966. MR 34 # 5044b.
R. L. Davis, Order algebras, Bull. Amer. Math. Soc. 76 (1970), 83-87. MR 40 # 4185.
L. Geissinger, Valuations of distributive lattices (to appear).

C. Gresene, On the Möbius algebra of a partially ordered set (to appear).
C. Gresene, On the Möbius algebra of a partially ordered set (to appear).
F. Lorrain, Notes on topological spaces with minimum neighborhoods, Amer. Math. Monthly 76 (1969), 616-627. MR 40 #1966.
G.-C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340-368. MR 30 #4688.

Wardschnienkeinschloste und verw. Geber 2 (1964), 540-566. MR 35 #4660.
T. —, On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 221–233. MR 44 #126.
L. Solomon, The Burnside algebra of a finite group, J. Combinatorial Theory 2 (1967),

603-615. MR 35 # 5528.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NORTH CAROLINA 27514