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A combinatorial pregeometry, or matroid, may be defined as a finite 
set of elements E and a collection of bases M, all subsets of E, such that for 
all B,B' G âiï and any é eB' — £, there exists e e B — B' for which 
B — e + e' e&. This exchange axiom suggests it is fruitful to represent a 
pregeometry Jt by a graph : Let there be a vertex for each basis and an 
edge for each pair of bases differing by a single exchange. We get the 
basis graph BG(Jt). A special case of this construct, tree graphs, has been 
studied for several years [3]. The more general situation has attracted 
attention only recently [1], [4]. 

Our purpose here is to announce our own studies of pregeometry basis 
graphs [6], [7], and to state some of our key findings. We have recently 
learned that some of our results and methods are similar to those dis­
covered about the same time by Cunningham [2] and also by Holzmann, 
Norton and Tobey [5]. In particular, Theorems 2 and 3 below are in this 
category. 

We first characterize basis graphs. Given any graph G(iT, S\ suppose 
ö(v', v") = 2 and 'V' c V consists oft;', x>" and all vertices adjacent to both. 
Then the induced subgraph < i O is called the common neighbor subgraph 
CN(v\ t/'), or simply a CN. In a basis graph each CN is either a square 
(4-cycle), a pyramid (with square base), or an octahedron. Again in any 
graph, a leveling from v0 is a partition of V into 

rk = {v:ö(v9v0) = k}9 fc = 0 , l , . . . . 

In any leveling of a basis graph, each octahedral CN lies in one of three 
positions : (i) all in one level ; (ii) across two levels, three adjacent vertices 
in each; or (iii) across three levels, one vertex in the highest, one not 
adjacent to it in the lowest, and four in between. Any other CN must lie 
as would an induced subgraph of such an octahedron. We call this the 
positioning condition. Finally, the neighborhood subgraph N(v) is the in­
duced subgraph on the vertices adjacent to v (v not included). 

THEOREM 1. G is a basis graph iff 
(1) it is connected; 
(2) each CN is a square, pyramid or octahedron; 
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(3) in every leveling, every CN meets the positioning condition; and 
{4) for some v0, N(v0) is the line graph of a bipartite graph. 

There is an alternate form of this characterization in which the posi­
tioning condition is assumed for the leveling from v0 only, but another 
condition forbidding two particular induced subgraphs is added. We can 
also show that (4) is redundant in many cases. We suspect it is redundant 
in all. Indeed, we conjecture that (1) and (2) alone suffice if there are no 
square CiV's ; unfortunately, they do not suffice otherwise. 

The proof of Theorem 1 leads quickly to two other results. First, there 
is a simple characterization of basis graphs in terms of mappings into the 
small subclass whose CiV's are all octahedra. Second, if two paths differ­
ing by a single vertex are considered homotopic, all basis graphs are 
homotopically trivial. More generally, this homotopy relates to graph 
products in the same way ordinary homotopy relates to topological 
products, i.e., 

n(Gi x G2) « niGJ x n(G2). 

We characterize pregeometries whose basis graphs contain only one 
or two types of CiV's. The most interesting of these results is that M is 
binary (see [9] or [11]) iffBG(Jt) contains no induced octahedra. 

Given G(f, S\ < i O is shortest path complete (SPC) if whenever » e f 
is on a shortest path in G between v', v" s "K\ then v e V. Tutte [9] has 
characterized certain important classes of pregeometries in terms of for­
bidden minors. We show that minors of M correspond to SPC's of BG(Ji). 
This allows us to find some analogues of his theorems. For instance, Jl 
is regular iff no SPC of BG{M) is an octahedron or a certain graph with 
29 vertices. Planar-graph pregeometries can be characterized by further 
requiring that no SPC be the tree graph of K5 or K33. However, graphic 
pregeometries cannot be characterized in this way, for a pregeometry 
and its dual have isomorphic basis graphs. 

For any J((E9 @) we may assign to each B e M a 0-1 circuit matrix C(B) 
with rows indexed by B, columns by D = E — B, and a 1 in entry (fc, d) 
iff B - b + de&. For graphic pregeometries these are closely related to 
the usual cycle and cocycle matrices. More generally, for each binary 
pregeometry, one can get from any circuit matrix to any other by the 
standard pivoting rules of linear programming (applied to the field F2). 
In fact, {C(B):BeâS} is just a combivalence class as defined by Tucker 
[8]. For arbitrary pregeometries, one may still pivot between circuit 
matrices ; with just one exception the rules are the same as for a com­
bivalence class. We use this result, first demonstrated by Yoseloff [10], 
to obtain simply several propositions. Among these are the next theorem 
and the results already mentioned on basis graphs with restricted CiV's. 
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Jt(E, 38) is proper if no element is in every basis or outside of every 
one. Improper elements do not affect BG{Jt). Also, if there exist Jt^E^â&ù 
i = 1,2, where the Et are nonempty and partition E, and B = {Bx u B2 : 
Bt e &i}, then Jt is a nontrivial sum. 

THEOREM 2. If Jt is proper, the following are equivalent'. 
(1) Jt is a nontrivial sum; 
(2) BG(Jt) is a nontrivial product ; 
(3) for some B, N(B) in BG{Jt) is disconnected. 

We also use circuit matrices to study polars, the tops and bottoms of 
levelings. Not only is every polar itself a basis graph, it is even the basis 
graph of a sum. This is trivially true for a top polar, since it is a single 
vertex. However, we generalize the notion of leveling in a way which 
untrivializes this fact, while at the same time bringing out an up-down 
symmetry. 

Finally, we have noted that Jt and its dual Jt* have isomorphic basis 
graphs. There is a partial converse. We w r i t e r » Jt' if there is a bijection 
of elements which preserves bases. 

THEOREM 3. lfJt,Jt' are proper and BG(Jt) « BG(Jt% then there exist 
Jtl9Jt2 where 

Jt = Jtx + Jt2, Jt' « Jtx + Jt%. 

REMARK. In many situations it is natural to restrict attention from 
pregeometries to geometries; see Crapo and Rota [11]. However, this is 
usually not the case when one works with bases, where the restriction is 
that each pair of elements must appear in some basis. In particular, there 
does not seem to be a nice refinement of Theorem 1 which characterizes 
basis graphs of geometries. 
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