SELFADJOINT SUBSPACE EXTENSIONS OF NONDENSELY DEFINED SYMMETRIC OPERATORS¹

BY EARL A. CODDINGTON

Communicated by Fred Brauer, December 18, 1972

1. Subspaces in \mathfrak{H}^2 . Let \mathfrak{H} be a Hilbert space over the complex field C, and let $\mathfrak{H}^2 = \mathfrak{H} \oplus \mathfrak{H}$ be the Hilbert space of all pairs $\{f, g\}$, where $f, g \in \mathfrak{H}$, with the inner product $(\{f, g\}, \{h, k\}) = (f, h) + (g, k)$. A subspace T in \mathfrak{H}^2 is a closed linear manifold in \mathfrak{H}^2 ; its domain $\mathfrak{D}(T)$ is the set of all $f \in \mathfrak{H}$ such that $\{f, g\} \in T$ for some $g \in \mathfrak{H}$, and its range $\mathfrak{R}(T)$ is the set of all $g \in \mathfrak{H}$ such that $\{f, g\} \in T$ for some $f \in \mathfrak{H}$. For $f \in \mathfrak{D}(T)$ we put $T(f) = \{g \in \mathfrak{H} | \{f, g\} \in T\}$. A subspace T in \mathfrak{H}^2 is the graph of a linear function if $T(0) = \{0\}$; in this case we say T is an operator in \mathfrak{H} , and then we denote T(f) by Tf.

The *adjoint* T^* of a subspace T in \mathfrak{H}^2 is defined by

$$T^* = \{\{h, k\} \in \mathfrak{H}^2 | (g, h) = (f, k) \text{ for all } \{f, g\} \in T\}.$$

If J is the unitary operator in \mathfrak{H}^2 given by $J\{f,g\} = \{g, -f\}$, then $T^* = \mathfrak{H}^2 \ominus JT$, the orthogonal complement of JT in \mathfrak{H}^2 . This shows that T^* is also a subspace in \mathfrak{H}^2 .

If T is a subspace in \mathfrak{H}^2 , let $T_{\infty} = \{\{f, g\} \in T | f = 0\}$. Then $T_s = T \ominus T_{\infty}$ is a closed operator in \mathfrak{H} , and we have the orthogonal decomposition $T = T_s \oplus T_{\infty}$, with $\mathfrak{D}(T_s)$ dense in $\mathfrak{H} \ominus T^*(0)$, $\mathfrak{R}(T_s) \subset \mathfrak{H} \ominus T(0)$.

A symmetric subspace S in \mathfrak{H}^2 is one satisfying $S \subset S^*$, and a selfadjoint subspace H is a symmetric one such that $H = H^*$. If $H = H_s \oplus H_{\infty}$ is a selfadjoint subspace in \mathfrak{H}^2 we have the result (due to Arens, [1, Theorem 5.3]) that H_s , considered as an operator in $\mathfrak{H} \ominus H(0)$, is a densely defined selfadjoint operator there. This permits a spectral analysis of a selfadjoint subspace H, once its operator part H_s and its purely multi-valued part H_{∞} have been identified.

If S, S_1 are symmetric subspaces in \mathfrak{H}^2 such that $S \subset S_1$, then S_1 is said to be a symmetric extension of S. In [3] (see also [2]) we described all symmetric and selfadjoint extensions of a symmetric subspace S in \mathfrak{H}^2 . In this note we characterize precisely, in terms of "generalized boundary conditions", those selfadjoint subspace extensions of a nondensely defined symmetric operator S in \mathfrak{H} . Applications to ordinary differential operators will be indicated in a subsequent note. Detailed

AMS (MOS) subject classifications (1970). Primary 47B99, 47B25, 47A20.

Key words and phrases. Symmetric subspace, selfadjoint subspace, selfadjoint extension, symmetric operator, selfadjoint operator.

¹ This research was supported in part by NSF Grant No. GP-33696X.

Copyright © American Mathematical Society 1973

proofs will appear elsewhere.

We require from [3, Theorems 12 and 15] two characterizations of the selfadjoint extensions H of a symmetric subspace S in \mathfrak{H}^2 . All such satisfy $S \subset H \subset S^*$; let $M = S^* \ominus S$.

THEOREM A. A subspace H is a selfadjoint extension of S in \mathfrak{H}^2 if and only if $H = S \oplus M_1$, where M_1 is a subspace of M satisfying $JM_1 = M \oplus M_1$.

Alternatively, such H may be described in terms of the subspaces $M^{\pm} = \{\{h, k\} \in S^* | k = \pm ih\}$. We have $M = M^+ \oplus M^-$ and the following result.

THEOREM B. A subspace H is a selfadjoint extension of S in \mathfrak{H}^2 if and only if there exists an isometry V of M^+ onto M^- such that $H = S \oplus (I - V)M^+$, where I is the identity operator. Thus S has a selfadjoint extension in \mathfrak{H}^2 if and only if dim $M^+ = \dim M^-$.

2. Selfadjoint extensions of nondensely defined symmetric operators. Let S_0 be a symmetric densely defined operator in \mathfrak{H} , and let \mathfrak{H}_0 be a subspace of \mathfrak{H} . Throughout this section we assume that

(2.1) $\dim \mathfrak{H}_0 = p < \infty$, $\dim M_0 < \infty$, $M_0 = S_0^* \ominus S_0$.

We define S to be the operator in \mathfrak{H} given by

(2.2)
$$\mathfrak{D}(S) = \mathfrak{D}(S_0) \cap (\mathfrak{H} \ominus \mathfrak{H}_0), \qquad S \subset S_0.$$

This operator is not densely defined, and so its adjoint will be a subspace which is not an operator.

THEOREM 1. Let S be defined by (2.2), where (2.1) is assumed. Then S is a symmetric operator with $\mathfrak{D}(S)$ dense in $\mathfrak{H} \ominus \mathfrak{H}_0$, and

(2.3)
$$S^* = \{\{h, S_0^*h + \varphi\} | h \in \mathfrak{D}(S_0^*), \varphi \in \mathfrak{H}_0\},\$$

(2.4)
$$\dim M^{\pm} = \dim(M_0)^{\pm} + \dim \mathfrak{H}_0$$

Thus $S^*(0) = \mathfrak{H}_0$ and S^* is the algebraic sum of S_0^* and $(S^*)_{\infty}$. From (2.4) and Theorem B it follows that S has selfadjoint extensions in \mathfrak{H}^2 if and only if $\dim(M_0)^+ = \dim(M_0)^-$, that is, if and only if S_0 has self-adjoint extensions in \mathfrak{H} . We now assume $\dim(M_0)^+ = \dim(M_0)^- = \omega$, and indicate how one can characterize any selfadjoint extension H of S in \mathfrak{H}^2 by means of "generalized boundary conditions". Theorem A implies that any such $H = S \oplus M_1$ can be thought of as $H = S^* \oplus JM_1$, where dim $M_1 = p + \omega$. Thus

$$H = \{\{h, k\} \in S^* | (k, \alpha) - (h, \beta) = 0 \text{ for all } \{\alpha, \beta\} \in M_1\},\$$

and (2.3) implies that H is the set of all $\{h, S_0^*h + \phi\} \in S^*$ satisfying

(2.5)
$$\langle h\alpha \rangle - (h, \varphi') + (\varphi, \alpha) = 0$$

for all $\{\alpha, S_0^*\alpha + \varphi'\} \in M_1$. Here we have introduced the abbreviation $\langle h\alpha \rangle = (S_0^*h, \alpha) - (h, S_0^*\alpha), h, \alpha \in \mathfrak{D}(S_0^*)$. By thinking of H as in (2.5) we obtain the following precise characterization.

THEOREM 2. Let H be a selfadjoint subspace extension of S in \mathfrak{H}^2 , with dim H(0) = s. Let an orthonormal basis for H(0) be $\varphi_1, \ldots, \varphi_s$, and suppose $\varphi_1, \ldots, \varphi_s, \varphi_{s+1}, \ldots, \varphi_p$ is an orthonormal basis for $S^*(0) = \mathfrak{H}_0$. Then *H* is the set of all $\{h, S_0^*h + \phi\} \in S^*$ such that

- (i) $(h, \varphi_j) = 0, j = 1, \dots, s,$
- (ii) $\langle h\delta_i \rangle (h, \zeta_i) = 0, j = p + 1, \dots, p + \omega,$
- (iii) $\varphi = c_1 \varphi_1 + \cdots + c_s \varphi_s + \sum_{k=s+1}^p [(h, \psi_k) \langle h \gamma_k \rangle] \varphi_k, c_i \in C$ arbitrary,

where

714

(a) $\gamma_{s+1}, \ldots, \gamma_p \in \mathfrak{D}(S_0^*),$

(b) $\delta_{p+1}, \ldots, \delta_{p+\omega} \in \mathfrak{D}(S_0^*)$ are linearly independent mod $\mathfrak{D}(S_0)$, and $\langle \delta_j \delta_k \rangle = 0, j, k = p + 1, \dots, p + \omega,$

(c) $\zeta_j = -\sum_{k=s+1}^p \langle \delta_j \gamma_k \rangle \varphi_k, j = p+1, \dots, p+\omega,$ (d) $\psi_j = \sum_{k=s+1}^p [E_{kj} - \frac{1}{2} \langle \gamma_j \gamma_k \rangle] \varphi_k, j = s+1, \dots, p, E_{jk} \in \mathbb{C}, E = (E_{jk})$ $= E^*$.

Conversely, let $\varphi_1, \ldots, \varphi_p$ be an orthonormal basis for \mathfrak{H}_0 , suppose γ_j, δ_j exist satisfying (a), (b), and ζ_j, ψ_j are defined by (c), (d). Then H defined via (i)–(iii) is a selfadjoint extension of S with dim H(0) = s.

The operator part H_s of H is given by

$$H_{s}h = Q_{0}S_{0}^{*}h + \sum_{k=s+1}^{s} [(h,\psi_{k}) - \langle h\gamma_{k} \rangle]\varphi_{k}$$

where Q_0 is the orthogonal projection of \mathfrak{H} onto $\mathfrak{H} \ominus H(0)$.

With appropriate interpretations, Theorem 2 remains valid in the three cases: s = 0, s = p, and $\omega = 0$. If s = 0 then H is an operator extension of S, and those operator extensions H satisfying $S_0 \subset H \subset S_0^*$ are obtained by taking $\gamma_j = 0$, $E_{kj} = 0$, which results in $\zeta_j = 0$, $\psi_j = 0$. Then

$$\mathfrak{D}(H) = \{h \in \mathfrak{D}(S_0^*) | \langle h \delta_j \rangle = 0, j = p + 1, \dots, p + \omega\},\$$

$$\langle \delta_j \delta_k \rangle = 0, \qquad j, k = p + 1, \dots, p + \omega,$$

which is the known characterization of such H. If $\omega = 0$ and s = p, $H(0) = \mathfrak{H}_0$ and $H_s h = Q_0 S_0 h$. Thus, given any selfadjoint operator S_0 in \mathfrak{H} , with $\mathfrak{D}(S_0)$ dense in \mathfrak{H} , and subspace $\mathfrak{H}_0 \subset \mathfrak{H}$, dim $\mathfrak{H}_0 < \infty$, the operator H_s on $\mathfrak{H} \ominus \mathfrak{H}_0$ defined by $H_s h = Q_0 S_0 h$ is a densely defined selfadjoint operator. This is a result due to W. Stenger [4, Lemma 1].

References

1. R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23.

July

MR 23 #A517.

MR 25 # A517.
2. E. A. Coddington, Multi-valued operators and boundary value problems, Lecture Notes in Math., No. 183, Springer-Verlag, Berlin, 1971.
3. ——, Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc. No. 134 (1973).
4. W. Stenger, On the projection of a selfadjoint operator, Bull. Amer. Math. Soc. 74 (1968), 369-372. MR 36 # 3142.

UNIVERSITÉ DE PARIS VI, PARIS, FRANCE

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024