PERIODIC AND HOMOGENEOUS STATES ON A VON NEUMANN ALGEBRA. III

BY MASAMICHI TAKESAKI¹

Communicated by Jacob E. Feldman, September 12, 1972

In this paper, we will show with a fairly complete proof that most of the results in [10] hold for homogeneous periodic states on a factor without the assumption of *inner* homogeneity. As an application, we will see that nonisomorphic ergodic automorphisms $\tilde{\theta}$ of \mathcal{Z}_0 give rise to nonisomorphic factors $\mathcal{R}(\mathcal{M}_0, \theta)$ of type III. We keep most of the terminology and the notations in [9] and [10].

We consider an arbitrary pair of homogeneous periodic states φ and ψ on a factor \mathcal{M} of the same period, say T>0. Let $\kappa=e^{-2\pi/T}, 0<\kappa<1$. We denote by $\mathcal{M}_n^{\varphi,\psi}$ the set of all $x\in\mathcal{M}$ such that $\rho_t(x)=\kappa^{int}x, t\in R$, which was denoted by \mathcal{N}_n in [10]. With this alternation of the notation, we first note that Lemmas 1 through 6 remain valid without the assumption of inner homogeneity. Since \mathcal{M}_0^φ and \mathcal{M}_0^ψ are no longer factors, we have to analyze more carefully the relation between \mathcal{M}_0^φ , $\mathcal{M}_0^{\varphi,\psi}$ and \mathcal{M}_0^ψ . We denote by \mathcal{L}_0^φ and \mathcal{L}_0^ψ the center of \mathcal{M}_0^φ and \mathcal{M}_0^ψ respectively, and by u_φ and u_ψ the isometries in \mathcal{M}_1^φ and \mathcal{M}_0^ψ onto $e_\varphi \mathcal{M}_0^\varphi e_\varphi$ and $e_\psi \mathcal{M}_0^\psi e_\psi$ respectively, where $e_\varphi=u_\varphi u_\varphi^u$ and $e_\psi=u_\psi u_\psi^u$. We also denote by θ_φ and θ_ψ the automorphisms of \mathcal{L}_0^φ and \mathcal{L}_0^ψ induced by θ_φ and θ_ψ respectively. Since \mathcal{M} is a factor, we know from [9, Proposition 9] that θ_φ and θ_ψ are both ergodic.

LEMMA 1. For each $n \in \mathbb{Z}$, we have

(1)
$$\mathcal{M}_{n-1}^{\varphi,\psi} = u_{\varphi}^* \mathcal{M}_n^{\varphi,\psi} \quad and \quad \mathcal{M}_{n+1}^{\varphi,\psi} = \mathcal{M}_n^{\varphi,\psi} u_{\psi}.$$

PROOF. From [10, Lemma 5], it follows that $\mathcal{M}_{n-1}^{\varphi,\psi} \supset u_{\varphi}^* \mathcal{M}_n^{\varphi,\psi}$; so

$$\mathcal{M}_{n-1}^{\varphi,\psi}=u_{\varphi}^{*}u_{\varphi}\mathcal{M}_{n-1}^{\varphi,\psi}\subset u_{\varphi}^{*}\mathcal{M}_{n}^{\varphi,\psi}\subset \mathcal{M}_{n-1}^{\varphi,\psi}.$$

Hence we get $\mathcal{M}_{n-1}^{\varphi,\psi} = u_{\varphi}^* \mathcal{M}_n^{\varphi,\psi}$. By symmetry, the assertion for u_{ψ} follows. Q.E.D.

Lemma 2. For any nonzero projections $p \in \mathcal{M}_0^{\varphi}$ and $q \in \mathcal{M}_0^{\psi}$, we have

$$p\mathcal{M}_n^{\varphi,\psi} \neq \{0\}$$
 and $\mathcal{M}_n^{\varphi,\psi}q \neq \{0\}$.

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. von Neumann algebra, modular automorphism group, periodic state, homogeneous state.

¹This work is supported in part by NSF Grant No. GP-33696X.

PROOF. Let \mathscr{I}_n be the set of all $x \in \mathscr{M}_0^{\varphi}$ with $x\mathscr{M}_n^{\varphi,\psi} = \{0\}$. By [10, Lemma 5], \mathscr{I}_n is a σ -weakly closed ideal of \mathscr{M}_0^{φ} , so that there exists a projection $z_n \in \mathscr{Z}_0^{\varphi}$ such that $\mathscr{I}_n = \mathscr{M}_0^{\varphi} z_n$. If $x \in \mathscr{I}_n$, then $x\mathscr{M}_{n+1}^{\varphi,\psi} = x\mathscr{M}_n^{\varphi,\psi} u_{\psi} = \{0\}$ by (1), which means that $\mathscr{I}_n \subset \mathscr{I}_{n+1}$; so $z_n \leq z_{n+1}$. We have

$$\tilde{\theta}_{\varphi}(z_n)e_{\varphi}\mathcal{M}_{n+1}^{\varphi,\psi}=u_{\varphi}z_nu_{\varphi}^*\mathcal{M}_{n+1}^{\varphi,\psi}=u_{\varphi}z_n\mathcal{M}_n^{\varphi,\psi}=\{0\},$$

so that $\tilde{\theta}_{\omega}(z_n)e_{\omega} \leq z_{n+1}$; hence $\tilde{\theta}_{\omega}(z_n) \leq z_{n+1}$. Conversely, we have

$$\tilde{\theta}_{\boldsymbol{\omega}}^{-1}(z_{n+1})\mathcal{M}_{\boldsymbol{n}}^{\boldsymbol{\varphi},\boldsymbol{\psi}} = u_{\boldsymbol{\omega}}^* z_{n+1} u_{\boldsymbol{\omega}} \mathcal{M}_{\boldsymbol{n}}^{\boldsymbol{\varphi},\boldsymbol{\psi}} \subset u_{\boldsymbol{\omega}}^* z_{n+1} \mathcal{M}_{\boldsymbol{n}+1}^{\boldsymbol{\varphi},\boldsymbol{\psi}} \subset \{0\}.$$

Hence we get $\tilde{\theta}_{\varphi}^{-1}(z_{n+1}) \leq z_n$, so that $z_{n+1} \leq \tilde{\theta}_{\varphi}(z_n)$. Thus we have $z_{n+1} = \tilde{\theta}_{\varphi}(z_n)$. Hence $z_n \leq \tilde{\theta}_{\varphi}(z_n)$. The equality $\varphi(z_n) = \varphi \circ \tilde{\theta}_{\varphi}(z_n)$ implies that z_n must be either 0 or 1. Since $\mathcal{M}_n^{\varphi,\psi} \neq \{0\}$, we have $z_n = 0$. Hence $p\mathcal{M}_n^{\varphi,\psi} \neq \{0\}$. By symmetry, $\mathcal{M}_n^{\varphi,\psi}q \neq \{0\}$. Q.E.D.

LEMMA 3. Let v_1 and v_2 be partial isometries in $\mathcal{M}_n^{\varphi,\psi}$ with initial projections q_1, q_2 and final projections p_1, p_2 respectively. Then the following statements are equivalent:

- (i) p_1 and p_2 are centrally orthogonal in \mathcal{M}_0^{φ} , i.e. $p_1 \mathcal{M}_0^{\varphi} p_2 = \{0\}$;
- (ii) q_1 and q_2 are centrally orthogonal in \mathcal{M}_0^{ψ} , i.e. $q_1 \mathcal{M}_0^{\psi} q_2 = \{0\}$.

PROOF. By symmetry, we have only to prove (i) \Rightarrow (ii). Suppose $q_1 \mathcal{M}_0^b q_2 \neq \{0\}$. Let x be an element in \mathcal{M}_0^b with $q_1 x q_2 \neq \{0\}$. We have then $v_1^* v_1 x v_2^* v_2 \neq 0$, so that $v_1 x v_2^* \neq 0$. Hence $p_1 v_1 x v_2^* p_2 = v_1 x v_2^* \neq 0$. But this is impossible because $v_1 x v_2^*$ is in \mathcal{M}_0^o by [10, Lemma 5]. Q.E.D.

Suppose $\{v_i\}_{i\in I}$ is a maximal family of partial isometries in $\mathcal{M}_n^{\varphi,\psi}$ such that the initial projections $q_i = v_i^* v_i$ are centrally orthogonal in \mathcal{M}_0^{φ} . Let $p_i = v_i v_i^*$. By Lemma 3, $\{p_i\}_{i\in I}$ are centrally orthogonal in \mathcal{M}_0^{φ} . Hence $v = \sum_{i\in I} v_i$ is a partial isometry in $\mathcal{M}_n^{\varphi,\psi}$. Let $p = vv^*$ and $q = v^*v$. By Lemma 3, we conclude that the central supports of p and q in \mathcal{M}_0^{φ} and \mathcal{M}_0^{ψ} are both the identity. Therefore, there exists an isomorphism σ_v of \mathcal{Z}_0^{ψ} onto \mathcal{Z}_0^{φ} such that

(2)
$$\sigma_v(a)p = vav^*, \qquad a \in \mathcal{Z}_0^{\psi}.$$

LEMMA 4. For every projection $f \in \mathcal{Z}_0^{\psi}$, $\sigma_v(f)$ is characterized as the smallest projection $e \in \mathcal{Z}_0^{\varphi}$ such that $e \mathcal{M}_n^{\varphi, \psi} f = \mathcal{M}_n^{\varphi, \psi} f$.

PROOF. Let e be the smallest projection in \mathscr{Z}_0^{φ} with $e\mathscr{M}_n^{\varphi}f = \mathscr{M}_n^{\varphi,\psi}f$. We have then evf = vf, so that

$$\sigma_v(f)p = vfv^* = evfv^*e = e\sigma_v(f)pe = \sigma_v(f)ep.$$

Hence $(\sigma_v(f) - \sigma_v(f)e)p = 0$. Since the central support of p is 1, we have $\sigma_v(f) = \sigma_v(f)e$; that is, $\sigma_v(f) \le e$. If $e - \sigma_v(f) \ne 0$, then there exists an $x \in \mathcal{M}_n^{\varphi,\psi}$ with $[e - \sigma_v(f)]xf = x \ne 0$. Let x = wh = kw be the left and right polar decomposition of x. As in the arguments (8) in [19], $w \in \mathcal{M}_n^{\varphi,\psi}$.

By the choice of x, we have $ww^* \le e - \sigma_v(f)$ and $w^*w \le f$. On the other hand, we have $vf = \sigma_v(f)vf$, so that $(vf)(vf)^* \le \sigma_v(f)$ and $(vf)^*(vf) = fv^*vf = fq$. Hence the central support of $(vf)^*(vf)$ in \mathcal{M}_0^{ψ} is f. But this is impossible by Lemma 3 because the central supports of $(vf)(vf)^*$ and ww^* in \mathcal{M}_0^{φ} are orthogonal. Thus we get $\sigma_v(f) = e$. Q.E.D.

Therefore, the isomorphism σ_v does not depend on the choice of v, but only on $n \in \mathbb{Z}$; so we denote it by σ_n .

LEMMA 5. For each $n \in \mathbb{Z}$, we have

(3)
$$\sigma_n \circ \tilde{\theta}_{\psi} = \sigma_{n+1} = \tilde{\theta}_{\varphi} \circ \sigma_n.$$

PROOF. Let f be an arbitrarily fixed projection in \mathscr{Z}_0^{ψ} . Let $e_n = \sigma_n(f) \in \mathscr{Z}_0^{\phi}$. We have then

$$e_{n+1}u_{\varphi}\mathcal{M}_{n}^{\varphi,\psi}f = u_{\varphi}\mathcal{M}_{n}^{\varphi,\psi}f,$$

$$u_{\varphi}^{*}e_{n+1}u_{\varphi}\mathcal{M}_{n}^{\varphi,\psi}f = \mathcal{M}_{n}^{\varphi,\psi}f.$$

Hence we have $\tilde{\theta}_{\varphi}^{-1}(e_{n+1}) \ge e_n$; equivalently, $e_{n+1} \ge \tilde{\theta}_{\varphi}(e_n)$. On the other hand, putting $z = 1 - \tilde{\theta}_{\varphi}(e_n)$, we have

$$u_{\varphi}^* z u_{\varphi} \mathcal{M}_n^{\varphi, \psi} f = (1 - e_n) \mathcal{M}_n^{\varphi, \psi} f = \{0\};$$

$$z e_n \mathcal{M}_n^{\varphi, \psi} f = z u_n \mathcal{M}_n^{\varphi, \psi} f = u_n u_n^* z u_n \mathcal{M}_n^{\varphi, \psi} f = \{0\}.$$

Hence we have $ze_{\varphi} \leq (1-e_{n+1})$; so $z \leq 1-e_{n+1}$. Therefore we get $\tilde{\theta}_{\varphi}(e_n) \geq e_{n+1}$. Thus we have $e_{n+1} = \tilde{\theta}_{\varphi}(e_n)$; that is, $\tilde{\theta}_{\varphi} \circ \sigma_n(f) = \sigma_{n+1}(f)$ for every projection $f \in \mathscr{Z}_0^{\psi}$, which means that $\sigma_{n+1} = \tilde{\theta}_{\varphi} \circ \sigma_n$.

By symmetry, the other half of our assertion follows. Q.E.D.

COROLLARY 6. The ergodic automorphisms $\tilde{\theta}_{\varphi}$ of $\mathscr{Z}_{0}^{\varphi}$ and $\tilde{\theta}_{\psi}$ of \mathscr{Z}_{0}^{ψ} are isomorphic.

LEMMA 7. If v is a partial isometry in $\mathcal{M}_n^{\varphi,\psi}$ such that the initial projection $q = v^*v$ and the final projection $p = vv^*$ have the central support 1, then we have

$$p^{\natural} = \alpha \kappa^n \sigma_n(q^{\natural}),$$

where α is the real number defined in [10].

PROOF. Consider a faithful state $\varphi \circ \sigma_n$ on \mathscr{Z}_0^{ψ} . Then $\varphi \circ \sigma_n \circ \tilde{\theta}_{\psi} = \varphi \circ \tilde{\theta}_{\varphi} \circ \sigma_n = \varphi \circ \sigma_n$, so that $\varphi \circ \sigma_n$ is $\tilde{\theta}_{\psi}$ -invariant; hence $\varphi \circ \sigma_n$ is a scalar multiple of ψ on \mathscr{Z}_0^{ψ} by the ergodicity of $\tilde{\theta}_{\psi}$. But $\varphi \circ \sigma_n$ and ψ are both states, so that $\varphi \circ \sigma_n = \psi$ on \mathscr{Z}_0^{ψ} .

We have next, for every $a \in \mathscr{Z}_0^{\psi}$,

$$\psi(a\sigma_n^{-1}(p^{\natural})) = \varphi(\sigma_n(a\sigma_n^{-1}(p^{\natural}))) = \varphi(\sigma_n(a)p^{\natural})$$

$$= \varphi(\sigma_n(a)p) = \varphi(vav^*)$$

$$= \alpha\kappa^n\psi(av^*v) \quad \text{by [10, Lemma 4]}$$

$$= \alpha\kappa^n\psi(aq) = \alpha\kappa^n\psi(aq^{\natural}).$$

Thus, we get $\sigma_n^{-1}(p^{\natural}) = \alpha \kappa^n q^{\natural} = \alpha \kappa^n q^{\natural}$, equivalently $p^{\natural} = \alpha \kappa^n \sigma_n(q^{\natural})$.

Making use of the similar arguments as in Lemma 2, we conclude the following:

LEMMA 8. If $p \in \mathcal{M}_0^{\varphi}$ and $q \in \mathcal{M}_0^{\varphi}$ are projections with central support e and f in \mathcal{M}_0^{φ} and \mathcal{M}_0^{ψ} respectively, then $p\mathcal{M}_n^{\varphi,\psi}q = \{0\}$ if and only if $e\sigma_n(f) = 0$.

Now, let $\{v_i\}_{i\in I}$ be a maximal family of partial isometries in $\mathcal{M}_n^{\varphi,\psi}$ such that the initial projections $q_i = v_i^* v_i$ and the final projections $p_i = v_i v_i^*$ are orthogonal respectively. Let $v = \sum_{i \in I} v_i$, $p = \sum_{i \in I} p_i$ and $q = \sum_{i \in I} q_i$. By Lemma 3, the central supports of p in \mathcal{M}_0^{φ} and q in \mathcal{M}_0^{φ} are respectively the identity. By maximality, we have $(1-p)\mathcal{M}_n^{\varphi,\psi}(1-q) = \{0\}$. Let e and f be the central supports of p in \mathcal{M}_0^{φ} and q in \mathcal{M}_0^{φ} respectively. By Lemma 8, $e\sigma_n(f) = 0$. On the other hand, we have $p^{\natural} = \alpha \kappa^n \sigma_n(q^{\natural})$ by Lemma 7. Hence $p^{\natural} \leq \alpha \kappa^n \leq 1$ if $n \geq 1$. Hence we have e = 1, so that f = 0; so q = 1. Hence v must be an isometry if $n \geq 1$. Similarly, if $n \leq 0$, then v is a co-isometry. For n = 0, v is unitary if and only if $\alpha = 1$. Thus we reach the following conclusion:

Theorem 9. If φ and ψ are homogeneous periodic states on a factor \mathcal{M} with same period, then there exists isometries u and v in \mathcal{M} such that

$$\psi(x) = \varphi(uxu^*)/\varphi(uu^*),$$

$$\varphi(x) = \psi(vxv^*)/\psi(vv^*), \qquad x \in \mathcal{M};$$

$$p = uu^* \in \mathcal{M}_0^{\varphi} \quad and \quad q = vv^* \in \mathcal{M}_0^{\psi}.$$

From this theorem, we can conclude that Theorems 8 through 10 in [10] hold for homogeneous periodic states φ , ψ with the same period and/or for projections p and q with uniform relative dimensions.

Let \mathscr{F} be a hyperfinite II_1 -factor and $\mathscr{A}=L^\infty(0,1)$. Let $\mathscr{M}_0=\mathscr{F}\otimes\mathscr{A}$. For $0<\kappa<1$, we choose a projection $f\in\mathscr{F}$ with $\tau(f)=\kappa$, where τ is the canonical trace of \mathscr{F} . Let θ be a fixed isomorphism of \mathscr{F} onto $f\mathscr{F}f$. For each $\sigma\in\mathrm{Aut}(\mathscr{F})$, let $\theta_\sigma=\theta\circ\sigma$. Let $\tilde{\theta}$ be an ergodic automorphism of \mathscr{A} with invariant faithful normal state μ . Changing $\tilde{\theta}$ under an automorphism of \mathscr{A} , we may assume that μ is given by the Lebesgue measure on (0,1). Let $\varphi_0=\tau\otimes\mu$. We obtain then a factor $\mathscr{R}(\mathscr{M}_0,\theta_\sigma\otimes\tilde{\theta},\varphi_0)$ as described in [9]. We denote it by $\mathscr{M}(\kappa,\sigma,\tilde{\theta})$.

THEOREM 10. We choose $\sigma_1, \sigma_2 \in Aut(\mathcal{F})$ and ergodic automorphisms $\tilde{\theta}_1$ and $\tilde{\theta}_2$ of \mathcal{A} and fix κ . A necessary and sufficient condition for $\mathcal{M}(\kappa, \sigma_1, \tilde{\theta}_1)$ $\cong \mathcal{M}(\kappa, \sigma_2, \tilde{\theta}_2)$ is that

- (i) $\tilde{\theta}_1$ and $\tilde{\theta}_2$ are isomorphic as ergodic automorphisms of \mathscr{A} ;
- (ii) there exist a projection p in \mathscr{F} with $p \geq f$, a partial isometry w in \mathscr{F} and an isomorphism ρ of \mathcal{F} onto $p\mathcal{F}p$ such that

$$w\theta \circ \sigma_1 \circ \rho(x)w^* = \rho \circ \theta \circ \sigma_2(x);$$

$$\theta \circ \sigma_1 \circ \rho(x) = w^*\rho \circ \theta \circ \sigma_2(x)w, \qquad x \in \mathcal{M}.$$

Furthermore, if $\tilde{\theta}_1$ and $\tilde{\theta}_2$ have no point spectrum other than 1, then the isomorphy $\mathcal{M}(\kappa_1, \sigma_1, \tilde{\theta}_1) \cong \mathcal{M}(\kappa_2, \sigma_2, \tilde{\theta}_2)$ implies that $\kappa_1 = \kappa_2$ as well as (i) and (ii).

ACKNOWLEDGEMENT. The author would like to thank Professor H. Araki for enjoyable discussions on the subject of this paper; Dr. A. Connes for his kindness informing the author of his new results on which this work depends; Professor H. A. Dye for his constant encouragement; and the members of the functional analysis seminar at Queen's University where the related topics were extensively discussed.

REFERENCES

- 1. A. Connes, Un nouvel invariant pour les algèbre de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A900-A903.
- 2. —, Calcul des deux invariants d'Araki et Woods par la théorie de Tomita et Takesaki, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A175-A177.
- -, Groupe modulairé d'une algèbre de von Neumann de genre denombrable, C.R. Acad. Sci. Paris Sér. A-B 274 (1972), A1923-A1926.
- 4. _____, États presque périodiques sur une algèbre de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1402-A1405.
 - —, A letter to the author, dated June 17, 1972.
- 6. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbre de von Neumann),
 Cahiers scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 # 1234.
 7. E. Størmer, Spectra of states, and asymptotically abelian C*-algebras (to appear).
- 8. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 # 5061.
- 9. ——, Periodic and homogeneous states on a von Neumann algebra. I. Bull. Amer. Math. Soc. 79 (1973), 202–206.
- -, Periodic and homogeneous states on a von Neumann algebra. II, Bull. Amer. Math. Soc. 79 (1973), 416-420.
- 11. -, The structure of a von Neumann algebra with a homogeneous periodic state, Acta Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024