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In this paper, we will show with a fairly complete proof that most of the 
results in [10] hold for homogeneous periodic states on a factor without 
the assumption of inner homogeneity. As an application, we will see that 
nonisomorphic ergodic automorphisms Ö of Jf0 give rise to nonisomorphic 
factors â#(J/09 0) of type III. We keep most of the terminology and the 
notations in [9] and [10]. 

We consider an arbitrary pair of homogeneous periodic states q> and \j/ 
on a factor Jt of the same period, say T > 0. Let K = e~2n/T, 0 < K < 1. 
We denote by M J^ the set of d\\xeJ( such that pt(x) = Kintx, t G R, which 
was denoted by i^ in [10]. With this alternation of the notation, we first 
note that Lemmas 1 through 6 remain valid without the assumption of 
inner homogeneity. Since Jt% and M\ are no longer factors, we have to 
analyze more carefully the relation between Jt%,Ji%^ and Jt%. We 
denote by 2t% and Jf% the center of Jt% and Jt% respectively, and by u^ 
and u^ the isometries in Jt\ and Jt\ respectively which give rise to 
isomorphisms 69 and 0^ of Ji% and Jt% onto e(pJt%e(? and e^Jt%e^ 
respectively, where e^ = u^u* and e^ = i^w|. We also denote by 0^ and 
d^ the automorphisms of jf§ and &% induced by 6^ and 6^ respectively. 
Since Jt is a factor, we know from [9, Proposition 9] that 0^, and 0^ are 
both ergodic. 

LEMMA 1. For each nGZ, we have 

(1) Jt**! = u*Jlt* and MVU = - C % . 

PROOF. From [10, Lemma 5], it follows that JK^ 3 u%MZ*\ so 

Hence we get Jt^± = u*Jt*'*'. By symmetry, the assertion for u^ follows. 
Q.E.D. 

LEMMA 2. For any nonzero projections p G Jt% and q e Jt%, we have 

pJ(Z'+ ± {0} and Jt**q + {0}. 
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PROOF. Let Jn be the set of all x e M% with xMl^ = {0}. By [10, Lemma 
5], Jn is a cr-weakly closed ideal of Ji%, so that there exists a projection 
zne%% such that Jn = Jt%zn. If x e / „ , then xUfTJ^ = xJ£*>\ = {0} 
by (1), which means that / B c / B + 1 ; s o z „ g z n + 1 . We have 

U*ù***ïU = u*«u%Jtïh = u^ZnJiV* = {0}, 

so that ^(z„)^ ^ zM+1 ; hence ^ ( z j ^ zn+1. Conversely, we have 

fl^fc+iMT* = ulz^ur*** c u*zH+1Jf:^ cz {0}. 

Hence we get Ö~1(z„+1) ^ zw, so that zM+1 ^ ^ (z j . Thus we have 
zw+1 = S^zJ. Hence z„ ̂  S^zJ. The equality <p(zB) = (poë^zj implies 
that zM must be either 0 or 1. Since Ji^ =/= {0}> we have zn — 0. Hence 
puT?'* ^ {0}. By symmetry, u T J ^ =£ {0}. Q.E.D. 

LEMMA 3. Let vx and v2 be partial isometries in M%%* with initial pro­
jections ql9 q2 and final projections pl9 p2 respectively. Then the following 
statements are equivalent : 

(i) Pi and p2 are centrally orthogonal in Jt%, i.e. p^Ji%p2 = {0} ; 
(ii) qx and q2 are centrally orthogonal in Jt%, i.e. q±Jl%q2 — {0}. 

PROOF. By symmetry, we have only to prove (i) => (ii). Suppose q^Jt%q2 

•=£• {0}. Let x be an element in Jt% with qxxq2 ¥" {0}. We have then 
vfv1xv%v2 # 0, so that vxxv% ^ 0. Hence p^vlxv%p2 = vxxv^ / 0. But 
this is impossible because i^xuf is in Ji% by [10, Lemma 5]. Q.E.D. 

Suppose {vi}ieI is a maximal family of partial isometries in Ji^ such 
that the initial projections qt = vfvt are centrally orthogonal in Jt%. Let 
Pi = vtvf. By Lemma 3, {Pi}ieI are centrally orthogonal in J(%. Hence 
v = Yjteivi is a partial isometry in Ji^. Let p = vv* and q = v*v. By 
Lemma 3, we conclude that the central supports of p and q in Ji% and Ji\ 
are both the identity. Therefore, there exists an isomorphism av of <2f§ 
onto 2£% such that 

(2) (jv(a)p = vav*9 ae&%. 

LEMMA 4. For every projection fe^,Gv(f) is characterized as the 
smallest projection ee3£% such that eJt%> +f = M%* *f. 

PROOF. Let e be the smallest projection in 2£% with eJf*f = Jt^+f. 
We have then evf = vf so that 

0v(f)P = Vfv* = evfv*e = e<rv(f)pe = av(f)ep. 

Hence {(Jv(f) — ov(f)e)p = 0. Since the central support of p is 1, we have 
°v(f ) = av(ƒ)e \ that is, (Tv(ƒ) g e. If e - av(f) ^ 0, then there exists an 
X G J ^ with [e - ev(f)]xf= x £ 0. Let x = wh = few be the left and 
right polar decomposition of x. As in the arguments (8) in [19], w e Ji^. 
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By the choice of x, we have ww* ̂  e — av(ƒ) and w*w ^ ƒ. On the other 
hand, we have vf = <rp( f)vf, so that (i?/)(t;/)* ^ (Tr( ƒ ) and (tjf )*(vf ) = >*t;/ 
= fq. Hence the central support of {vf)*{vf) in Jt% is/ . But this is impos­
sible by Lemma 3 because the central supports of (vf )(vf )* and ww* in 
M% are orthogonal. Thus we get av{ ƒ ) = e. Q.E.D. 

Therefore, the isomorphism av does not depend on the choice of v, but 
only on neZ; so we denote it by an. 

LEMMA 5. For each neZ, we have 

(3) on°Ö<j, = °n+i = 0</>°<V 

PROOF. Let ƒ be an arbitrarily fixed projection in <2f #. Let en = an{ ƒ ) € <3f§. 
We have then 

en^^Jt^f^u^M^f 

u%en+^Ml*f = M»*f 

Hence we have &~\en^x) ^ e„; equivalently, en+1 ^ ö<f,(en). 
On the other hand, putting z — 1 — ^ ( e j , we have 

ifyu+MÏ+f = (1 - O ^ W = {0}; 

zer*frif = z iv***/ = u9u*zur*;*f = {0}. 

Hence we have ze^ ^ (1 - eH+1); so z g l - e B + 1 . Therefore we get 
&<Mn) ^ ^+i- T h u s w e h a v e ^»+i = 0>M); that is, ö9oan(f) = <rn+1(/) 
for every projection ƒ e J?#, which means that an+ x = 0^ o (jn. 

By symmetry, the other half of our assertion follows. Q.E.D. 

COROLLARY 6. The ergodic automorphisms 5^ of &% and S^ of &$ are 
isomorphic. 

LEMMA 7. If v is a partial isometry in M*%* such that the initial projection 
q = v*v and the final projection p = vv* have the central support 1, then 
we have 

(4) p* = *Knon{q\ 

where a is the real number defined in [10]. 

PROOF. Consider a faithful state q> o an on 3£%. Then (p o an o Ô̂  = <p o Ô̂  o <7M 

= ^ o <7W, so that <jp o (TM is ̂ -invariant ; hence <p o <r„ is a scalar multiple of ^ 
on Jf# by the ergodicity of Ö^. But <p o an and i/̂  are both states, so that 
q>o(jn = \f/ on <2fg. 

We have next, for every a € <2?#, 
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Mw^V1)) = ^KK_1(P^))) = <p(°n(a)P*) 

= <p(°n(a)p) = (p(vav*) 

= (XKnxl/(av*v) by [10, Lemma 4] 

= ocKnxl/(aq) = dKn\l/(aq^). 

Thus, we get a~ 1(p^) = ccKnq^ = OLKnq^, equivalently p^ = afcV^). 
Making use of the similar arguments as in Lemma 2, we conclude the 

following : 

LEMMA 8. If p e Ji% and q e Jî% are projections with central support e 
and f in M% and Jt% respectively, then pMZ^q = {0} if and only if eon(f) 
= 0. 

Now, let {Vi}ieI be a maximal family of partial isometries in JH*** such 
that the initial projections q{ = vfvt and the final projections pt = vtvf are 
orthogonal respectively. Let v = f,ieIvh p = ^iPt and q = £ t e /«,. By 
Lemma 3, the central supports of p in Jl% and g in Jt\ are respectively the 
identity. By maximality, we have (1 - p)Jt%>*(\ - q) = {0}. Let e and/be 
the central supports of p in Ji% and q in Jt% respectively. By Lemma 8, 
e(rn(f) = 0. On the other hand, we have p^ = oiKnan{q^) by Lemma 7. 
Hence p* ^ OCK" ^ 1 if n ^ 1. Hence we have e = 1, so that ƒ = 0; so 
q = 1. Hence i; must be an isometry if n ^ 1. Similarly, if n ^ 0, then v is a 
co-isometry. For n = 0, Ü is unitary if and only if a = 1. Thus we reach 
the following conclusion : 

THEOREM 9. If q> and i// are homogeneous periodic states on a factor Jt 
with same period, then there exists isometries u and v in Jt such that 

\j/(x) = (p(uxu*)/q>(uu*), 

cp(x) = il/(vxv*)/il/(vv*), x e J ; 

p = uu* e M% and q = vv* e Jt\. 

From this theorem, we can conclude that Theorems 8 through 10 in [10] 
hold for homogeneous periodic states q>, if/ with the same period and/or 
for projections p and q with uniform relative dimensions. 

Let & be a hyperfinite IIrfactor and sé = L°°(0,1). Let Jt0 = & ® sé. 
For 0 < K < 1, we choose a projection ƒ e !F with x(f) = K, where T is 
the canonical trace of #". Let 9 be a fixed isomorphism of 3F onto ƒ#ƒ. 
For each c e Aut(^"), let 0a = 0 o a. Let 0 be an ergodic automorphism of 
sé with invariant faithful normal state \x. Changing Ö under an automor­
phism of sé, we may assume that \x is given by the Lebesgue measure on 
(0,1). Let <p0 = T (g) JU. We obtain then a factor @l(Jt0, da (g) Ö, (p0) as 
described in [9]. We denote it by JÏ(K, G, Ö). 



1973] STATES ON A VON NEUMANN ALGEBRA 563 

THEOREM 10. We choose al9 a2 e Aut(^") and ergodic automorphisms öx 

and Ö2 of sé and fix K. A necessary and sufficient condition for JÏ(K, ax, Öx) 
^ JÏ(K, <r2,Ö2) ^ that 

(i) Öl and Ö2 are isomorphic as ergodic automorphisms of sé \ 
(ii) there exist a projection p in HF with p^fa partial isometry w in &* 

and an isomorphism p of 2F onto pgFp such that 

w0 o (j1 o p(x)w* = poflo cr2(x) ; 

flo^o p(x) = W*p o 0 o G2(x)w, XSM. 

Furthermore, ifÖt and Ö2 have no point spectrum other than 1, then the 
isomorphy JV(Kly<Fl9öi) = J£(K2,G2,Ö2) implies that KX = K2 as well as 
(i) and (ii). 
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