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Consider the initial value problem 

d n d 
(1) j u + X Aj (x, t) — u = 0, u(x, 0) - <D(x). 

Here Aj (x, t) are smooth k x k matrix-valued functions on Rn x R, con
stant for large |x| + \t\, and u0 e Hs(Rn) for some se R. We assume that (1) 
is strictly hyperbolic in the sense that ]T" ^Aj has real and distinct eigen
values for all £ = (£ l 9 . . . , £„) =/= 0. The solution to this problem is a weak, 
i.e., distribution, limit of solutions uE of the problem 

d n d 
(2) T uE + X 4 / (x ' f) T - M« = e 5 ( x ' D *K» ^£(^5 °) = *(*)> 

(7t 7 = 1 7 

where e > 0 and B(x, Dx) is an elliptic operator of order two, whose 
principal symbol is a k x k matrix with positive eigenvalues2. In fact, 
this is the well-known technique of parabolic regularization, or the "vis
cosity" method. 

Our interest in these problems arises from the study of systems of non
linear conservation laws. In studying computer output of such systems, 
we observed that for certain viscosity matrices, suggested in [1], the 
solutions ue were not converging to the correct solution, but were con
verging to a solution containing an extraneous shock wave. We discovered 
similar behavior for linear systems and it is this phenomenon which we 
investigate here. 

It is known (see [3], [5]) that the singularities of the solution u to (1) 
propagate along bicharacteristics through the singularities of the initial 
data <I>. In our numerical experiments, for n = 1, k = 2, we took $ to 
have a single singularity at the origin, and we knew that the singularity 
of the solution lay along precisely one bicharacteristic ray through the 
origin. However, we found that the approximate solutions seemed to be 
developing a singularity along the second bicharacteristic through the 
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origin. This suggests two problems: look for examples of "illusory" 
singularities of the solution uE to (2); and investigate whether such sin
gularities only occur along bicharacteristics through singularities in O. 
We outline our results here; complete proofs will be given elsewhere. 

EXAMPLE 1. Let n = 2 = /c, A = (J §), B = (\ ?), U = (w, v)\ and consider 
the system 

^UF + AS-U=SB^U„ £ > O , 2 dt dx e <3x' 

with initial data u = 5, v = 0. The solution is given by the well-known 
formula 

I f 0 0 

where T = (iAÇ — £#£2)£ + ix^, and Ô denotes the Fourier transform 
of <I>, which in this case is the vector (1,0)r. In order to evaluate this integral, 
we diagonalize T: If X± are the eigenvalues of T, and A = diag (A + , A_), 
then e r = SeAS~\ where S = (J ?X Ö = ^5-

One finds that 
^ + \ 

at 
0\ixÇ(eÀ+ - ex)) 

and a calculation yields 

2x e"x2/ef 2(x + t) e-
{x+t)2/Et 

vE (x, t) = 
t (st)1/2 t (st)1/2 

This sequence does indeed converge pointwise to zero as e -> 0, but 
does not converge uniformly (in x) to zero. It is precisely this phenomenon 
which showed up in our numerical calculations. We thus see that great 
care must be taken in applying the viscosity method for numerical cal
culation of discontinuous solutions to initial value problems, in particular 
for nonlinear hyperbolic conservation laws. 

EXAMPLE 2. If one gives up strict hyperbolicity then the uE need not even 
converge pointwise to the correct solution. To see this, let n = 2 = fc, 
let A = identity, B = (}§), and take the same data as in Example 1. 
Calculations similar to those above show 

e-(x+t)2/2et e-(x+t)2/st 

VE{X' t] = (1st)112 W^' 

so that vE (x, t) only goes weakly to zero. 
We now investigate the question of the propagation of singularities. 

Recall that if u e @'{£l\ then its wave front set, WF(u\ is a subset of 
T*(Q)\0 defined by 
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WF(u) = f) {y(A) \AueC™,As L°lt0(Q)}9 

where A is a pseudodifferential operator of order zero and y (A) is the set 
of characteristics of A. We refer to [3], [4] for notation and further details. 
If {uj} is a directed set of distributions, and if Uj -• u in ®'(Q), we define 
the wave front set of {w }̂, WF{UJ], as follows: Call a pseudodifferential 
operator A e L?>0(Q) smoothing for {uj} if Au3 -• ^w in C°°(Q). Then 

WF{Uj} — f] {y(A): 4 is smoothing for {if,-}}. 

A related concept is the following. Let T be a closed conic subset of 
T*(Q)\0 and let Hs

r(Q) = {u e HS(Q): WF(u) c T}. Then u e HS(Q) if and 
only if both (i) u e HS(Q), and (ii) Au e C°°(£2) for each A e L%(Q) whose 
symbol is of order - o o o n a conic neighborhood of T. Since it suffices 
for (ii) to hold for a countable set of A, HS(Q) can be given a natural 
topology by means of (i) and (ii) and is thus a Fréchet space. Note that 
Uj -> u in Hs

r(Q) implies that WF{UJ} a r . 
Let Q = Rn and consider the behavior of Fourier integral operators on 

H£(Rn). We shall say that q e C 0 0 ^" x Rn) is in S%(Rn) if \Dp
xD\q{x, Ç)\ S 

Ca^(l + |£|)m_|a |. Now suppose that (j)(x, £) is a nondegenerate phase 
function, associated with the canonical relation C, and consider the 
Fourier integral operator 

Iqu(x) = (2n)-n J q(x, &*X-*Û(Ç) dÇ. 

LEMMA 1. For each closed conic subset T of T*(Rn)\09 Iq maps H^ into 
Hs

c~™ continuously, and the map q -> 1q from S™f0(R
n) into J?(Hs

r, H
s
CoT) is 

continuous. 

PROOF. That Iqu e Hs
c~^ for all ueHs

r follows from [4], and the continuity 
assertions follow easily from the closed graph theorem. 

We apply this lemma to the system (2) where fe = 2 and the coefficients 
are constant. 

THEOREM. Consider the initial value problem 

( 3 ) F t " * + £ ̂ 4"• = e J , B«lB^u" e> °'u* i x'0) = *W" 
We assume that Aj, Bkj are constant 2 x 2 matrices, that the eigenvalues of 
Y, i^jAj are real and distinct and that the eigenvalues ofY, ij^k^jk are posi
tive, both for real Ç =/= 0. If <D e H^R") and ifCtv are the canonical relations 
on T*(Rn)\0 determined at time t by the bicharacteristic flows given by the 
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hyperbolic operator L = d/dt + ]£ ̂ j d/dxj (v = 1,2), then uE(x, t) -• u(x, t) 

in HsCt,ioruCt,2T-
We outline the proof, where, for simplicity, we take n = 1. We further 

suppose A — A ! has been put in diagonal form,3 A = — diag(a, j8), and 
only consider the case where B = B n is positive definite and symmetric, 
i.e., B = (J? J), where ab > c2, a > 0, and c =£ 0. Thus, we consider the 
problem 

3 __ /a 0\ _d_ _ /Û c\ a2 

ötWfi~ \0 pj{hcUe=± \c bjdx2 

The solution is given by 

I"* - L J âZ^^ L Jâ32tt«> £>0,Ue(x,0) = *(x). 

1 f °° 
(4) ue(x, t) = ( -^p j e^'ADtf) #, 

where A = — itÇA — etÇ2B. To evaluate this, we first diagonalize A. The 
eigenvalues of A are 

k± = -bty.e ±H(s2y2
2e - y| + Hy*)112 + itty5, 

where yx = a + b, y\ = (a - b)2 + 4c2, y| = (a - jS)2, y4 = -2(a - b) 

• (a — /?), 75 = (a + j8)/2. Some easy calculations give 

.. ,. . , 1 lu + eÀ+ - u_ek~ u + u„(ek~ - eA + )\ 
u+ — w_ \ ex + — ex~ w+e'1' — w_eA + / 

where 
u± = (A± + e^2 - itpÇ)/-£tÇ2c. 

We consider first the case y4 =£ 0. Then w±(s, £) are analytic functions of 
£ for all real £ and w+ — w_ is never zero. The assertion that the wave 
front set of u propagates along bicharacteristic strips issuing from the wave 
front set of O follows from 

LEMMA 2. The following sets of functions are all bounded in S?)0(R): 
(a)u+(u+ — w_)_1,(b)(w+ — w_)-1,(c)w+w_(w+ — w_)-1,(d)exp[w+ — ita£], 
(e)exp[w_ — itjS<̂ ]. 

The last two are the hardest, so we consider only (d). Set 

qe(Ç) = exp[w+(e, £) - itaÇ]; 

we are to show that there exist C} independent of e, £ such that 

(5) qym s Cjd + Kir'. 

If we write ^e(^) = eSe(^, then we have 

Although this is not necessary, and could not be done if n > 1. 
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Re Stf) S ~ M 2 , for some Ô > 0, 
and 

(6) « ) = ^>É I kvJS^(t)---S?»(i), 

for some constants /cVJ-; thus we are left with investigating the derivatives 
ofS,(«J).Wehave 

s'M) = -sty^ + %m2yie - a + HnY12 - ^ 
\tyY? + jity^ 

(z2ytt2 - yl + Hyùm' 

« ) = \t ^rt? - yl + Wytf12 

+ LjL\^yie-yl + iM12, j>\, 
2d^~l 

with a term —sty^ if j = 2. Hence we get an estimate of the form 

-^(s2ytt2-y23 + izy4i)1/2 

dçJ 

<, C\s2y2
2e - y2 + isy^\1/2~j t e*(l + \i\)k~j. 

k = j 

We require 

LEMMA 3. There exists a C independent ofs, Ç such that 

\s2ytt2 - yi + izydr1 ^ c + Ce\a 

Using this lemma we get 

(7) \Sij)(0\S(l + \i\rV+s\è\y-112 Z ek(l + \t\)k+i (/>2), 
k = j - l 

with a harmless term Ce thrown in for j = 2, and, for j = 1, 

(8) \sfM)\ ^ c m + ia). 
This estimate for S'e(Ç) is the one crucial place where the term — itaÇ in 
the exponential plays a role. Without it, we would merely have \S'e(Ç)\ S 
C + Ce(l + |£|) and this is insufficient for (5). If we now use (7) and (8) 
in (6), we get (5). Next, if y4 = 0 and if O G S'{R\ we can write 

1 f00 

U{x, t) = — — ^ e « « + ") + i ^ + it)-«t« + » t ) M ^ + h}d^ 
(Z7lj J - oo 

where T is fixed and chosen so that (e2yi(£ + h)2 — yl)1'2 does not vanish. 
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The rest of the argument goes through without change except that Lemma 
3 must be replaced by the following weaker estimate 

ifi2?i« + î T ) 2 - y i r 1 ^ c + Cfii5i2. 

However, this is still enough to prove (5). 
We complete the proof of the Theorem. Set A£(Q>) = uE. Lemma 2 

shows that we can write Ae = AltB + A2fE with {Avy. 0 < e ^ 1} a 
bounded subset of I°(Rn, Cfv), the space of Fourier integral operators of 
order zero, with the topology induced by the set of symbols. From Lemma 
1 we can deduce that {ue} is bounded in H^> = Hs

iCuloT)uiCt2or)9 and 
moreover that ue -> u in Hs

r>. 
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