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In this note we will present two results concerning the question of 
existence of almost periodic solutions of the system of linear partial 
differential equations 

(1) iLtJUj = fi9 l ^ i g n , 

on Rm, where Lt is an arbitrary linear partial differential operator on Rm 

given by 

Cf. 

and the summation is finite. (We use the standard notation for partial 
differential operators, cf. [2] for example.) It will be more convenient to 
write the system (1) in the form 

(2) Lu = ƒ, 

where u and ƒ are now viewed as mappings of Rm into Rn. The order k 
of L is defined to be the maximum of the orders of the Lt. 

We will assume that the coefficients aafj- and ft are continuous and 
almost periodic functions of t = (t\..., tm) in Rm. Recall that g is an 
almost periodic function of t in Rm if, for every sequence fi' = {P'n} in Rm, 
there is a subsequence /? = {/?„} such that lim g(t -f /?„) converges uni­
formly for t in Rm. This notion of almost periodicity, which is due to 
Bochner for the case Rm = R1, is equivalent to the Bohr concept of 
almost periodicity, which is defined in terms of a relatively dense set of 
translation numbers. 

We define the hull H(L,f) to be the collection of all linear partial 
differential equations L*w = ƒ * where the coefficients a*0- and ft* are 
related to aaij and ƒ• by 

(3) lim aaiJ(t + PH) = aij(t) and lim ft(t + fiH) = Jf{t)9 teR\ 
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for some sequence ft = {ƒ?„}, which is independent of a, i and;. Since aaij 

is assumed to be almost periodic, the limit in (3) is in fact uniform for all t 
in Rm, although we shall only require pointwise convergence in (3) to 
define the hull. H(L, 0) will denote the hull of the homogeneous equation 
Lu = 0. 

A solution u of equation (2) is said to be Ck-bounded if w = (w l 9 . . . , un) 
together with all derivatives up to and including order k are bounded and 
uniformly continuous on Rm. 

Our first theorem is concerned with classical solutions of equation (2). 

THEOREM 1. Let L be a linear partial differential operator of order k 
and assume that the coefficients aaij and f are almost periodic functions oft 
in Rm. Assume further that every Ck-bounded solution of every homogeneous 
equation L*v = 0 in the hull H(L, 0) is almost periodic. Ifu is a Ck~bounded 
solution of any equation L*u = ƒ * in the hull H(L, ƒ ), then u is almost 
periodic. 

This theorem generalizes to partial differential equations similar results 
of Favard [3] and Bochner [1] for ordinary differential equations. The 
proof of this theorem, which will be given elsewhere, follows essentially 
the argument of Bochner, with appropriate modifications for the case of 
partial differential equations. 

The concept of C*-boundedness requires that the highest order deriva­
tive be uniformly continuous as well as bounded. In certain special cases 
one can prove that boundedness implies uniform continuity ; for example, 
this is true for ordinary differential equations. It is also true for Poisson's 
equation Au = f provided one uses the concept of a generalized solution 
(cf. [2] and [4]). 

The second problem we study in this note is the question of extending 
Theorem 1 to include generalized solutions. In particular, we study the 
behavior of bounded solutions of weakly coupled systems of the form 

n 

(4) Aut + £ UijUj = fi9 1 <i i g n, 
J = I 

where À is the Laplacian operator and the coefficients atj and f are almost 
periodic functions of t in Rm. Once again it is more convenient to write 
equation (4) in the form 

(5) Au + Au = f 

The hull of equation (5) is defined to be the collection H(A,f) of all 
partial differential equations 

Au + A*u = f* 
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where the coefficients A* and ƒ * are related to A and ƒ by 

A*{t) = lim A(t + pn) and ƒ *(t) = lim ƒ (f + / U t e Km, 

for some sequence ƒ? = {/?„} in Rm. For the homogeneous equation 
Av + Av = 0, the hull is simply H(A, 0). 

We define a generalized solution of equation (5) to be a continuous 
function u:Rm->Rn with the property that, for every C00-function 
4>:Rm -+ Rn with compact support, one has 

J [(u, A0) + (Au, 0)3 A = J ( ƒ, (/>) Jr. 

We use (u, u) to denote an inner product on Rn and let \u\ = (u, w)1/2 be the 
induced norm. 

For equation (5) we can prove the following result : 

THEOREM 2. (A) Let A and ƒ be almost periodic functions of t in Rm. 
Assume that if v is any nontrivial bounded generalized solution of any 
homogeneous equation Av + A*v = 0 in the hull H(A, 0), then 

mf{\v(t)\:teRm} > 0 . 

If there exists a bounded generalized solution u of equation (5), then there 
exists an almost periodic generalized solution ü of equation (5). 

(B) If every bounded generalized solution of every homogeneous equation 
in the hull H(A, 0) is almost periodic, then every bounded generalized solution 
of equation (5) is almost periodic. 

Theorem 2 includes as a special case the theorem of Sibuya for Poisson 's 
equation, which one gets by setting n = 1 and A = 0 (cf. [4]). In this case, 
the only bounded generalized solutions of the homogeneous equation 
Au = 0 are constant functions. 

Also if one sets m = 1 and replaces A with the ordinary differential 
operator D, where Dut = dujdt, then our theorem includes the well-
known result of Favard [3, pp. 90-94] for ordinary differential equations. 
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