PERIODIC AND HOMOGENEOUS STATES ON A VON NEUMANN ALGEBRA. II¹

BY MASAMICHI TAKESAKI

Communicated by Jacob E. Feldman, August 15, 1972.

This paper is a natural continuation of the previous paper [9]. In [9], we proved a structure theorem for a von Neumann algebra with a fixed periodic and homogeneous state. In this paper, we will show that the structure theorem in [9] determines intrinsically the algebraic type of a factor with a periodic and *inner* homogeneous state (see Definition 1). We keep the terminologies and the notations in [9].

DEFINITION 1. A normal state φ on a von Neumann algebra \mathcal{M} is said to be *inner homogeneous* if $G(\varphi) \cap \text{Int}(\mathcal{M})$ acts ergodically on \mathcal{M} , that is, if the group of all inner automorphisms of \mathcal{M} leaving φ invariant has no fixed points other than the scalar multiples of the identity.

For each $a \in \mathcal{M}$, we write

$$\operatorname{Ad}(a)x = axa^*, \qquad x \in \mathcal{M}.$$

Since $\operatorname{Ad}(u) \in G(\varphi)$ for a unitary $u \in \mathcal{M}$ if and only if u falls in \mathcal{M}_{φ} , the centralizer of φ , the inner homogeneity of φ is equivalent to the fact that $\mathcal{M}'_{\varphi} \cap \mathcal{M} = \{\lambda 1\}$. Hence \mathcal{M}_{φ} is a II₁-factor and \mathcal{M} itself is also a factor.

We consider two periodic and inner homogeneous faithful normal states φ and ψ on \mathcal{M} . We denote by $\{\mathcal{M}_n^{\varphi}: n = 0, \pm 1, ...\}$ and $\{\mathcal{M}_n^{\psi}: n = 0, \pm 1, ...\}$ the decompositions of \mathcal{M} in [9, Theorem 11] corresponding to φ and ψ respectively. By [9, Theorem 13], φ and ψ have the same period, say T > 0. Let $\kappa = e^{-2\pi/T}$, $0 < \kappa < 1$.

Following Connes' idea, we consider the tensor product $\mathscr{P} = \mathscr{M} \otimes \mathscr{L}(\mathfrak{H}_2)$ of \mathscr{M} and the 2 × 2-matrix algebra $\mathscr{L}(\mathfrak{H}_2)$. Let $\{e_{i,j}: i, j = 1, 2\}$ be a system of matrix units in $\mathscr{L}(\mathfrak{H}_2)$. Every $x \in \mathscr{P}$ is of the form

$$x = x_{11} \otimes e_{11} + x_{12} \otimes e_{12} + x_{21} \otimes e_{21} + x_{22} \otimes e_{22},$$

where $x_{ij} \in \mathcal{M}$. We define a faithful state χ on \mathcal{P} by

$$\chi(x) = \frac{1}{2}(\varphi(x_{11}) + \psi(x_{22})).$$

Connes showed in [3] that there exists a strongly continuous one-

Copyright © American Mathematical Society 1973

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. von Neumann algebras, modular automorphism group, periodic state, homogeneous state, inner homogeneous state.

¹ The preparation of this work was supported in part by NSF grant no. GP33696X.

parameter family $\{u_t\}$ of unitaries in \mathcal{M} such that $\sigma_t^{\chi}(1 \otimes e_{12}) = u_t \otimes e_{12}$ and $\sigma_t^{\psi}(x) = u_t^* \sigma_t^{\varphi}(x) u_t, x \in \mathcal{M}$.

LEMMA 2. $u_{s+t} = \sigma_s^{\varphi}(u_t)u_s^2$.

PROOF. The above cocycle equality follows from the simple calculation.

$$u_{s+t} \otimes e_{12} = \sigma_{s+t}^{\chi} (1 \otimes e_{12}) = \sigma_s^{\chi} \cdot \sigma_t^{\chi} (1 \otimes e_{12})$$
$$= \sigma_s^{\chi} (u_t \otimes e_{12}) = \sigma_s^{\chi} ((u_t \otimes e_{11}) (1 \otimes e_{12}))$$
$$= (\sigma_s^{\varphi} (u_t) \otimes e_{11}) (u_s \otimes e_{12}) = \sigma_s^{\varphi} (u_t) u_s \otimes e_{12}.$$

Since $\sigma_T^{\varphi} = \sigma_T^{\psi} = \text{id}$, u_T must be a scalar multiple of 1, so that one can find $1 \leq \alpha < e^{2\pi/T}$ with $u_T = \alpha^{iT} 1$. Let $v_t = \alpha^{-it} u_t$. We have then the following properties:

(1) $v_t^* \sigma_t^{\varphi}(x) v_t = \sigma_t^{\psi}(x), \qquad x \in \mathcal{M};$

(2)
$$v_{s+t} = \sigma_s^{\varphi}(v_t)v_s = \sigma_t^{\varphi}(v_s)v_t$$

 $v_T = 1.$

We define a one-parameter family $\{\rho_t\}$ of isometries of \mathcal{M} onto \mathcal{M} by

(4)
$$\rho_t(x) = \sigma_t^{\varphi}(x)v_t, \qquad x \in \mathcal{M}.$$

From (2) and (3) we obtain the following:

(5)
$$\rho_{s+t} = \rho_s \cdot \rho_t;$$

(6) $\rho_T = \mathrm{id}.$

For each integer *n*, let $\mathscr{V}_n = \{x \in \mathscr{M} : \rho_t(x) = \kappa^{int}x\}$. Since ρ_t has period *T*, $\mathscr{V}_n \neq \{0\}$ for some *n*.

LEMMA 3. An $x \in \mathcal{M}$ falls in \mathcal{V}_n if and only if

$$\sigma_t^{\chi}(x \otimes e_{12}) = \alpha^{it} \kappa^{int}(x \otimes e_{12}).$$

PROOF. We compute as follows:

$$\sigma_t^{\chi}(x \otimes e_{12}) = \sigma_t^{\chi}((x \otimes e_{11})(1 \otimes e_{12}))$$

= $(\sigma_t^{\varphi}(x) \otimes e_{11})(u_t \otimes e_{12}) = \sigma_t^{\varphi}(x)u_t \otimes e_{12}$
= $\alpha^{it}\sigma_t(x)v_t \otimes e_{12} = \alpha^{it}\rho_t(x) \otimes e_{12}.$

Thus, the assertion follows.

Therefore, we conclude that $x \in \mathscr{V}_n$ if and only if $\alpha \kappa^n \chi(y(x \otimes e_{12}))$

² ADDED IN PROOF. This cocycle equation is mentioned in the final version of [3], which was missed from an earlier version and not available at the time when this article was finished.

 $= \chi((x \otimes e_{12})y)$ for every $y \in \mathscr{P}$.

LEMMA 4. If $x \in \mathscr{V}_n$ and $y \in \mathscr{M}$, then we have

(7)
$$\alpha \kappa^n \psi(yx) = \varphi(xy).$$

PROOF. For each $x \in \mathscr{V}_n$ and $y \in \mathscr{M}$, we have

$$\alpha \kappa^n \psi(yx) = 2\alpha \kappa^n \chi((y \otimes e_{21})(x \otimes e_{12}))$$

= $2\chi((x \otimes e_{12})(y \otimes e_{21}))$ by Lemma 3
= $\varphi(xy)$.

LEMMA 5. $\mathcal{M}_{m}^{\phi}\mathcal{V}_{l}\mathcal{M}_{n}^{\psi} \subset \mathcal{V}_{m+l+n}$.

PROOF. For each $a \in \mathcal{M}_m^{\phi}$, $b \in \mathcal{M}_n^{\psi}$ and $x \in \mathcal{V}_l$, we have

$$\rho_t(axb) = \sigma_t^{\varphi}(axb)v_t = \kappa^{imt}a\sigma_t^{\varphi}(x)\sigma_t^{\varphi}(b)v_t$$
$$= \kappa^{imt}a\sigma_t^{\varphi}(x)v_tv_t^*\sigma_t^{\varphi}(b)v_t$$
$$= \kappa^{imt}a\kappa^{ilt}x\kappa^{int}b = \kappa^{i(m+l+n)t}axb.$$

Since \mathcal{M}_m^{φ} , $m \ge 1$, contains isometries and \mathcal{M}_n^{ψ} , $n \le -1$, contains co-isometries by [9], we conclude that $\mathcal{V}_n \ne \{0\}$ for every integer *n*. Since \mathcal{M}_0^{φ} and \mathcal{M}_0^{ψ} are both factors, we conclude that, for every pair of nonzero projections $p \in \mathcal{M}_0^{\varphi}$ and $q \in \mathcal{M}_0^{\psi}$,

 $p\mathcal{V}_n q \neq \{0\}.$

For an $x \in \mathscr{V}_n$, let x = uh = ku be the right and left polar decomposition of x. We have then

$$k(\kappa^{int}u) = \kappa^{int}x = \rho_t(x) = \sigma_t^{\varphi}(x)v_t = \sigma_t^{\varphi}(k)\sigma_t^{\varphi}(u)v_t.$$

By the unicity of the polar decomposition, we get $k = \sigma_t^{\varphi}(k)$ and $\kappa^{int}u = \rho_t(u)$; hence $u \in \mathscr{V}_n$. Similarly, we get $h = \sigma_t^{\psi}(h)$.

Thus, we obtain the following:

LEMMA 6. For every $x \in \mathscr{V}_n$, we have

$$xx^* \in \mathcal{M}_0^{\varphi}$$
 and $x^*x \in \mathcal{M}_0^{\psi}$.

If u is a partial isometry in \mathscr{V}_n , then we have, by (7),

$$\varphi(uxu^*) = \alpha \kappa^n \psi(xu^*u), \qquad x \in \mathcal{M}.$$

Taking fact (8) into account and making use of the usual exhaustion arguments, we conclude that there exists an isometry or a co-isometry u in \mathscr{V}_n according as $\alpha \kappa^n \leq 1$ or $\alpha \kappa^n > 1$. Considering various n, we conclude the following:

418

THEOREM 7. For periodic inner homogeneous faithful states φ and ψ on a factor \mathcal{M} , there exist isometries u and v in \mathcal{M} such that

(9)
$$\psi(x) = \varphi(uxu^*)/\varphi(uu^*),$$

 $\varphi(x) = \psi(vxv^*)/\psi(vv^*), \qquad x \in \mathcal{M};$

(10)
$$uu^* \in \mathcal{M}_0^{\varphi} \quad and \quad vv^* \in \mathcal{M}_0^{\psi}.$$

Fixing a periodic inner homogeneous state φ on a factor \mathcal{M} , for each projection $p \in \mathcal{M}_0^{\varphi}$ we define a state φ_p on $p\mathcal{M}p$ by

$$\varphi_p(x) = \varphi(x)/\varphi(p), \qquad x \in p\mathcal{M}p.$$

By Theorem 7, any other periodic inner homogeneous state ψ on \mathcal{M} is unitarily equivalent to φ_p for some $p \in \mathcal{M}_0^{\varphi}$; more precisely, there exists an isometry $u \in \mathcal{M}$ with $uu^* = p \in \mathcal{M}_0^{\varphi}$ such that $\psi(x) = \varphi_p(uxu^*)$ for every $x \in \mathcal{M}$. Thus, the set $\{\varphi_p : p \in \mathcal{M}_0^{\varphi}\}$ exhausts all possible periodic inner homogeneous states up to unitary equivalence.

THEOREM 8. Let p and q be two projections in \mathcal{M}_0^{φ} , and let u and v be isometries in \mathcal{M} with $uu^* = p$ and $vv^* = q$. Let $\psi(x) = \varphi_p(uxu^*)$ and $\omega(x) = \varphi_q(vxv^*)$, $x \in \mathcal{M}$. Then ψ and ω are unitarily equivalent if and only if $\varphi(p) = \kappa^n \varphi(q)$ for some integer n.

THEOREM 9. For the state ψ defined in the previous theorem, there exists $\sigma \in \operatorname{Aut}(\mathcal{M})$ with $\psi = \varphi \circ \sigma$ if and only if there exists an isomorphism ρ of \mathcal{M}_0^{φ} onto $p\mathcal{M}_0^{\varphi}p$ and a partial isometry w in \mathcal{M}_0^{φ} such that $\rho \cdot \theta(x) = w\theta \cdot \rho(x)w^*$, $x \in \mathcal{M}_0^{\varphi}$, where θ denotes the isomorphism described in [9, Theorem 11].

By the following theorem, one can distinguish the algebraic type of \mathcal{M} in terms of $\{\mathcal{M}_0^{\varphi}, \theta\}$.

THEOREM 10. Let \mathcal{M} and \mathcal{N} be factors equipped with periodic inner homogeneous states φ and ψ respectively. Let $\{\mathcal{M}_0, \theta\}$ and $\{\mathcal{N}_0, \rho\}$ be the relevant couples of II₁-factors and isomorphisms described in [9, Theorem 11] respectively. Let $e_{-1} = \theta(1)$ and $f_{-1} = \rho(1)$. Necessary and sufficient conditions for \mathcal{M} and \mathcal{N} to be isomorphic are that (i) $\varphi(e_{-1}) = \psi(f_{-1})$; (ii) there exists an isomorphism σ of \mathcal{N}_0 onto $p\mathcal{M}_0 p$ for some projection pwith $p \ge e_{-1}$ and a partial isometry w in \mathcal{M}_0 such that w $\theta \cdot \sigma(x)w^* = \sigma \cdot \rho(x)$, $x \in \mathcal{N}_0$.

Making use of the new results of Connes in [5], we can prove the following:

THEOREM 11. Let \mathcal{M} be a factor equipped with a periodic homogeneous state. The existence of a periodic inner homogeneous state on \mathcal{M} is equiva-

1973]

MASAMICHI TAKESAKI

lent to the fact that $S(\mathcal{M}) \neq \{0, 1\}$, where $S(\mathcal{M})$ means the invariant of \mathcal{M} defined by Connes in [1].

ACKNOWLEDGEMENT. The author would like to thank Professor H. Araki for enjoyable discussions on the subject of this paper; Professor H. Dye for his constant encouragement; Professor J. Woods for his kind hospitality at Queen's University where this work was completed; and Dr. A. Connes for his kindness in informing the author of his new results [3] and [5], on which this work depends heavily.

References

1. A. Connes, Un nouvel invariant pour les algèbres de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 273 (1971).

2. ____, Calcul des deux invariants d'Araki et Woods par la théorie de Tomita et Takesaki, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A175–A177.

3. _____, Groupe modulairé d'une algèbre de von Neumann de genre denombrable, C. R. Acad. Sci., Paris Sér. A-B 274 (1972), 1923-1926.

4. ______, Etats presque périodiques sur une algèbre de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1402–A1405. 5. _____, A letter to the author, dated June 17, 1972.

6. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.

7. E. Størmer, Spectra of states, and asymptotically abelian C*-algebras (to appear).

8. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 # 5061.

9. _____, Periodic and homogeneous states and a von Neumann algebra. I, Bull. Amer. Math. Soc. 79 (1973), 202–206.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024