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1. Introduction. In the present note we announce some results which 
have been obtained by the systematic exploitation of filtration arguments 
in the study of (infinite dimensional) Lie algebras. The fundamental theorem 
along this line appears in the following section. In §3 we indicate how this 
result can be used to provide a new proof and at the same time a generali
zation of the Shirshov-Witt subalgebra theorem; we recall that this 
theorem asserts that, with ground ring a field, a subalgebra of a free Lie 
algebra is free (this being of course the Lie-theoretic analogue of the 
Nielsen-Schreier subgroup theorem). §4 contains the statement of a 
result which will be seen to be the coproduct analogue of M. Hall's basis 
theorem for a free Lie algebra. From the existence of such a coproduct 
basis one is easily led to examples which show that there is no (at least 
strict) Lie-theoretic analogue of the Kurosch subgroup theorem; the 
problem of the structure of the subalgebras of a coproduct of Lie algebras 
takes on added interest. Some results along this line are listed in §5 ; this 
section contains also a criterion for the freeness of a Lie algebra. The 
sixth and final section contains acknowledgments and remarks. 

2. Setting of the context and statement of the fundamental theorem. It is 
to be expected that as we employ filtration arguments we should eventually 
find ourselves dealing with graded objects. In order to unify the presen
tation we have elected to assume from the beginning that our objects are 
graded. We let J denote a monoid whose operation is written additively 
and whose set of nonzero elements is denoted by J°, and R a commutative 
ring with unit. The notions of J-graded R-module, J-graded K-algebras, 
etc. are defined in the usual way. The sign commutation rule requires that 
the notion of odd and even be defined for the elements of J. We are led 
in this way to the notion of an oriented monoid : An oriented monoid J 
is a pair consisting of a commutative monoid, also denoted by J, with the 
cancellation property and a morphism e : J -> Z/2Z of monoids, where Z 
denotes the monoid of rational integers. The morphism e is called the 
orientation of J; an element s in J is called even if s(s) = 0 and odd if 
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s(s) = 1 ; the monoid J is called even if all of its elements are even. When 
the monoid is even the sign commutation rule can be effectively ignored. 
For the remainder of this note J denotes an oriented monoid. 

The standard concepts of homological algebra readily extend to the 
context of objects graded on an oriented monoid. There is gain to be had 
by requiring that the monoid be divergent; by definition a divergent 
monoid is an oriented monoid J such that J° is closed under the operation 
of addition and the intersection f]i^k (Pk((J°)k) *s empty, where (pk:J

k -> J 
is the /c-fold addition function. Homological algebra for objects graded 
on divergent monoids presents some very agreeable aspects ; we mention 
two instances, both having to do with tensor algebras and both being 
destined to play crucial roles in our arguments. Before doing this we need 
to recall that a J-graded i^-algebra is said to be connected if rj(A):R -> A0 

is an isomorphism, where rj(A):R -> A denotes the unit morphism of the 
algebra A. Thus, for example, a tensor algebra T(X) on a graded module X 
is connected if X0 = 0. Now with a little effort the following two results 
can be established: if T(X) is a connected tensor algebra graded on a 
divergent monoid over R and X is projective over R (this just means that, 
for each s in J, Xs is projective over R in the usual, that is, ungraded, 
sense) then any T(X)-module Z which is projective over R has projective 
dimension ^ 1 ; suppose that B is a connected algebra graded on a diver
gent monoid over JR such that the projective dimension of R over B is ^ 1 ; 
then, if A is a subalgebra of B such that B is projective over A, A is iso
morphic with the tensor algebra T(Q(A)\ Q(A) is projective over R and 
the projective dimension of R over A is ^ 1. We recall that for a supple
mented algebra A the R-module Q(A) of the indecomposable elements of 
A is defined to be the cokernel of the natural morphism 1(A) ® 1(A) -• 1(A), 
where 1(A) denotes the kernel of the augmentation morphism s(A) :A -• R. 

Recall that a filtration on a J-graded i^-module X is an increasing 
sequence FpX of submodules of X with p running through Z. A filtration 
(FPX) on X is said to be nonnegative if FpX = 0 for p < 0 and to be 
cocomplete if [jp FpX = X. Noting that each FpX is itself a J-graded 
K-module and that Fp_xX may be regarded as a submodule of FpX, we 
may define a Z-graded object E°(X) by setting Ep(X) equal to the factor 
module FpX/Fp_ XX. Defining morphisms of filtered modules in the usual 
way, we see that E° may be regarded as a functor from the category of 
filtered J-graded ^-modules to the category of Z x J-graded R-modules ; 
Z x J represents the product monoid of the monoids Z and J which for 
our purposes may be regarded as oriented by giving it the even orientation. 
But observe that this product monoid will not be divergent ; however the 
filtrations with which we shall be concerned will all have the property 
that the corresponding associated graded objects may be regarded as 
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graded on the submonoid (Z+ x J) u {(0,0)} which is divergent, where 
Z + denotes the set of positive integers. It is clear what is to be understood 
by a filtration on an algebra being compatible with the underlying algebra 
structure ; proceeding from such a filtration, we can define on the corres
ponding associated graded object the same type of algebra structure; 
thus, for example, if A is a supplemented J-graded jR-algebra with a 
filtration defined on it which is compatible with its supplemented algebra 
structure, then E°(A) may in a natural way be regarded as a supplemented 
.R-algebra (graded on a suitable monoid). 

THEOREM A. Let J denote an even divergent monoid and let L denote a 
J-graded Lie algebra over R. Suppose that L injects via the canonical 
morphism into its universal enveloping algebra U(L) and U(L) has defined 
on it a filtration which is compatible with its supplemented algebra structure, 
cocomplete.nonnegative and FpU(L) = Rforp = 0; moreover the canonical 
morphism U(E°L) -> E°(UL) is an isomorphism and U(E°L) is a connected 
tensor algebra on a projective module. Then L is a projective Lie algebra. 

In the preceding L inherits the filtration from U(L) ; it is trivial to check 
that a filtration which is compatible with the supplemented algebra 
structure of U(L) will be compatible with the associated Lie algebra 
structure of U(L); hence the induced filtration on L will be compatible 
with its Lie algebra structure. Thus E°(L) may be regarded as a Lie 
algebra. Since the filtration-preserving morphism L -• U(L) induces a 
morphism E°(L) -» E°(UL) on the £°-level, there exists by the fundamental 
property of the universal enveloping algebra a unique morphism 
U(E°L) -• E°(UL) making the usual diagram commutative. A projective 
Lie algebra is the Lie subalgebra of a tensor algebra T(X) on a projective 
module X generated by X; denoting such a Lie algebra by L(X) we have 
that L(X) is free (on X) when X is free (as module). 

The proof of the theorem is surprisingly straightforward. Using the 
two relations Q(UL) = L/[L, L] valid for any Lie algebra L and Q(TX) = 
X valid for any module X, we get from the last hypothesis of the theorem 
that E°(L)/[E°(L\ E°(L)] is R-projective ; the projectiveness of this factor 
module allows us to pick a submodule of L which is itself projective and 
which by its very choice forms a set of generators of L. The verification 
that L is in fact "projectively" generated by this submodule is relatively 
routine. 

3. The subalgebra theorem. Our generalization of the Shirshov-Witt 
theorem is 

THEOREM B. Let L(X) be a projective Lie algebra which is filtered as a 
subalgebra of the canonically filtered algebra U(LX) = T(X) (FpT(X) = 
R LI X U • • • LI Xp® where Xp® = X ® • • • ® X denotes the p-fold 
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tensor product of X). Suppose that L' is a subalgebra ofL(X) such that the 
monomorphism E°(L') -> E°(LX) is split over R. Then L' is a projective 
Lie algebra. 

An immediate corollary of this result is the Shirshov-Witt subalgebra 
theorem. In the statement of the preceding theorem it is understood that 
the underlying monoid is even and divergent ; observe that the usual type 
of (ungraded) Lie algebra can always be regarded as trivially graded. 
We indicate now very briefly how the preceding theorem follows from 
Theorem A: A twofold extension of Proposition XIII, 4.1 in Cartan and 
Eilenberg [1] enables us to conclude that the natural morphism U(E°L') -• 
U(E°(LX)) is a monomorphism and that the latter module is projective 
as a module over the former (on either side). Using the easily established 
relation E°(LX) = L{E°X\ we get that U(E°(LX)) is a connected tensor 
algebra on a projective module (namely on E°(X)). Making use of this as 
well as of those special properties of connected tensor algebras graded 
on a divergent monoid mentioned in the preceding section, we are able 
to conclude that U(E°L') is a connected tensor algebra on a projective 
module. The only other hypothesis of Theorem A that needs any verifying 
at all is that the morphism U(E°L') -• E°(UL') is in fact an isomorphism. 
The filtration on U(L') can be defined in such a way (namely as a certain 
one induced by the filtration on L') that the surjectivity of the morphism 
in question is immediate; the injectivity can be established with the help 
of the following commutative diagram 

U(E°L') -+ U(E°(LX)) 
ï Ï 

E°(UL') -• E°(U(LX)) 

in which—as we have already seen—the top horizontal map is injective. 
Hence it suffices to show that the right vertical map is injective ; that it is 
indeed bijective follows from the relations 

U(E°(LX)) = U(L(E°X)) = T(E°X) = E°(TX) = E°{U(LX)) 

all of which can be straightforwardly verified. 

4. A coproduct basis. In this and the following section the underlying 
monoid is taken to be even and divergent. Letting A denote an indexing 
set we assume that, for each a in A, La is a Lie algebra which is R-free, 
say with basis denoted by Xa. We emphasize that each Xa is a graded set. 
Setting X equal to the (disjoint) union of the Xa we consider the nonas-
sociative words formed from the elements of X ; any such word w has 
associated with it in a unique way a length which we shall denote by 
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/(w). The words of length 1 are of course just the elements of X ; for x in X 
we shall denote by |x| the unique index a for which x lies in Xa. We define 
now various subsets of these nonassociative words each of which will be 
called a set of standard monomials (in X). The words of length 1 are the 
standard monomials of length 1 and are simply ordered by first simply 
ordering the indexing set A and each set Xa and then letting X have the 
resulting induced simple ordering. The standard monomials of length 2 
are defined to be those words of length 2 of the form x'x" for which 
|x'| > |x"|; these are simply ordered; by requiring that any standard 
monomial of length 1 is less than any standard monomial of length 2 we 
obtain a simple ordering of the standard monomials of length ^ 2. We 
assume that the standard monomials of length < n (n > 2) have been 
defined from the subset of words of length < n and simply ordered in such 
a way that for standard monomials r and s, l(r) < l(s) implies that r < s. 
Then a word w of length n is said to be a standard monomial if the follow
ing conditions are satisfied : 

(i) w = uv where u and v are standard monomials and u > v; 
(ii) [by (i) and the induction assumption it follows that l{u) > 1] 

writing u = u1u2, we have that u2 ^ v; 
(iii) if l(v) = 1 so that—as is readily seen—u must be of the form 

(• • • (xxx) • • )xk where x, xl9 • • •, xk are all in X, then x ^ v if |x| = \v\. 
The standard monomials of length n are simply ordered ; by requiring 

that any standard monomial of length <n is less than any standard 
monomial of length n we obtain a simple ordering of the standard mono
mials of length f^n. The definition is now completed by induction. 

Writing the Lie product by juxtaposition, we may regard the nonasso
ciative words and hence the standard monomials in X as a subset of the 
coproduct LJLa of the La. When each Xa consists of a single element the 
corresponding coproduct may be identified with the free Lie algebra on X ; 
our standard monomials are then just the standard monomials of Marshall 
Hall, Jr. [2]. The following theorem is the coproduct analogue of Hall's 
basis theorem. 

THEOREM C. Suppose that La, a in A, is a family of Lie algebras and that 
eacfi La is R-free. Then the coproduct LlLa of the La is R-free; indeed if 
Xa denotes an R-basis of La then any set of standard monomials defined 
from the union of the Xa constitutes an R-basis of J_lLa. 

A straightforward albeit laborious argument which is nothing more 
than Hall's own argument in a coproduct garb serves to establish the 
preceding result. However an appeal to filtration techniques allows us to 
reduce the proof of the theorem to the special case in which the La are 
all abelian. 
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5. The structure of various subalgebras of the coproduct. We shall merely 
list here a number of results which we have obtained by using the copro
duct basis theorem of the preceding section and/or filtration techniques. 

THEOREM D. Let La, a in A, be a family of Lie algebras and suppose that 
each La is free as R-module. Then the kernel of the natural morphism of the 
coproduct of the La into the corresponding product is a free Lie algebra; 
if D denotes this kernel, there is the direct sum decomposition ]_[ La = 
]£ La © D. /ƒ ,4 has been simply ordered in such a way that there exists an 
a0 in A such that for a > a0, La is l-dimensional, then the subalgebra generated 
by the La, a > a0, and D is free, and is equal to the direct sum 

a>ao 

Here £ La, resp. Xa>a0 La, denotes the subspace of the coproduct generated 
by the La, a in A, resp. a > a0. 

THEOREM E. With the ground ring assumed to be semisimple, the kernel 
of the unique morphism L ]_[ L -• L which induces the identity morphism 
on each factor L of L LI L is a projective Lie algebra. 

THEOREM F. With the ground ring assumed to be semisimple, for any 
Lie algebra L the pullback of the diagram 

LUL 
Ï 

L-+L]\L 

is a projective Lie algebra. 

COROLLARY. With the ground ring assumed to be semisimple, a Lie 
algebra L is projective if and only if there exists a morphism L -> L J_J L 
making the following diagram commutative 

LUL 

/ I 
L -* L f ] L. 

In both of the preceding results L -> L ]~J L denotes the diagonal morphism 
and L LI L -• L f ] L the unique morphism which takes the left resp. right-
hand factor L of L LI L into the corresponding factor of the product 
LUL. 

THEOREM G. Let La, a in A, be Lie algebras over a field and suppose that 
L is a subalgebra of L[La intersecting J]La in the zero subspace. Then 
L is free. 

6. Acknowledgments and comments. The results announced in this note 
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are contained in the author's doctoral dissertation written under the 
direction of Professor John C. Moore at Princeton University ; the author 
takes this opportunity to offer his profound thanks and gratitude to 
Professor Moore for his invaluable assistance, advice and encouragement; 
the idea of exploiting filtration arguments in the study of Lie algebras as 
outlined in the preceding originated with him. The Shirshov-Witt theorem 
appears in Shirshov [4] and Witt [6]. Hall's basis theorem [2] was the 
inspiration for our Theorem C ; Shirshov [5] has also obtained a coproduct 
basis. Theorems D and G have also appeared in Kukin [3]. The corollary 
of Theorem F is the analogue of a well-known criterion for the freeness 
of a group ; a straightforward proof of this group-theoretic criterion makes 
use of the Kurosch subgroup theorem which has no analogue for Lie 
algebras. I know at the present no proof other than a filtration one for 
this Lie-theoretic criterion. 

Full details of these as well as of other results are to appear in a forth
coming paper of the author. 
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