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We consider the reduced wave equation 

(A) Au -f k2u = 0 

with initial data prescribed on a hypersurface Z c Rn. It is well known 
that for points near Z, (A) has an asymptotic solution of the form : 

(B) a+(x, k)eik<l,+ + a_(x, *)<?**-

where a±(x, k) is an asymptotic series in k~l and 0 ± is a solution of the 
eikonal equation : (V</>)2 = 1 with initial data 0 ± = 0 on Z. The nonlinear 
initial value problem defining <j>± may be solved locally by ray tracing, 
but in general these rays have an envelope (often called a caustic), so a 
global solution does not exist. This limits the domain in which an asymp
totic series of the form (A) can be valid. In [4] Ludwig has derived an 
expansion valid near a caustic which involves the Airy function. In this 
note we show how Ludwig's result follows naturally from the combination 
of two well established mathematical disciplines : Maslov's global theory 
of asymptotics ([5], [6]) and the theory of singularities of differentiable 
mappings. In particular, the application of singularity theory leads to an 
asymptotic expansion in three dimensions at an intersection of the two 
focal surfaces, a question left unanswered by Ludwig. 

The central idea in the Maslov theory is to consider multiple valued 
solutions of the eikonal equation. This is most elegantly done with the 
formalism of Lagrangian manifolds. (See for example [3].) If X is a smooth 
manifold of dimension n, a Lagrangian manifold is an rc-dimensional 
submanifold of the cotangent bundle T*(X) on which the symplectic 
2-form Yjd*i A dÇt vanishes. For any function 0 G C G O ( M ) , the graph of 

I"W) = {(x,#J:xeJf}, 

is a Lagrangian manifold A such that the natural projection n : T*(X) -• X, 
restricted to A, is a diffeomorphism. Conversely, if A is a Lagrangian 
manifold and if n : A -> X is a diffeomorphism, then locally A may be 
described as the graph of some function. Of course, in general n\A will not 
be a diffeomorphism, but will have certain singularities. For example, a 
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Lagrangian manifold may be formed by pasting together along a caustic 
the graphs of two solutions of the eikonal equation in a given domain. 
This pasting is smooth in T*(X) ; only in the base do singularities appear. 

If A is a Lagrangian manifold, we call a point (x0, £0) e A regular if the 
Jacobian of the projection n : A -> X has rank n at (x0, £0). Given a 
regular point (x0, £0), n restricted to a sufficiently small neighborhood is 
a diffeomorphism ; hence near a regular point A may be parametrized as 
the graph of a function, often called a phase function. The following 
proposition, proved in Chapter 3, §1 of [3], shows that in a certain sense 
one can parametrize a Lagrangian manifold by a phase function even at 
singular points. 

PROPOSITION. Suppose dn has rank n — i at (x0, £0). Then there exists a 
function (j) = (/>(x, 0) on X x Rl such that its critical set C0 = {(x, 0): 
de4> = 0} is an n-dimensional submanifold ofXxR1 and the map C -> T£, 
(x, 0) -• (x, dx4>) maps a neighborhood of (x0,0) diffeomorphically onto a 
neighborhood of (x0, £0) in A. 

We shall call the set S a A of singular points the Maslov cycle and shall 
call n(S) the caustic of A. We may decompose S as a disjoint union 

S = S1 u S2 u • • • u S„, 

Sj consisting of points where dn has rank exactly n — j . In [2] we have 
shown that for A in general position Sj is a submanifold of A of codimen-
sion j(j + l)/2. If A is in general position we shall call a point (x0, £0) of 5X 

a fold point if the kernel of dn at (x0, £0) and the tangent space of Sx to
gether span T(A). For example the Lagrangian manifold constructed 
above by pasting along a caustic has fold points above the caustic, provided 
that the caustic is a smooth convex curve (the principal case considered 
by Ludwig). 

Now for each i, i = 0 , . . . , n, let Pt(x, D) be a partial differential operator 
on X of order i and with real leading symbol, P^x, £). Consider the partial 
differential operator 

m / i \i 

(C) P(x, D, X) = £ - r — Pf(x, D) 
i = o V - W / 

with A a large parameter. We will call the sum £ Pt(x, Ç) the symbol of 
this operator. If this symbol vanishes identically on A then the Maslov 
theory produces global asymptotic solutions of (C) by patching together 
local solutions which are of the form 

(D) f a(x ,0 ,Ay A ^ ' e ) d0, 
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where 0 is a phase function parameterizing A and a(x, 0, X) is an asymp
totic series in powers of X~1. At a regular point, no 0 variables are required 
in (D), and the expression reduces to a form analogous to (B). The following 
theorem, which contains Ludwig's result as a special case, shows that at 
a fold point (D) may again be simplified. 

THEOREM. Let (x0, £0) be a fold point on the Maslov cycle. Then there 
exist smooth functions p0 and p1 near x0 such that (D) is asymptotic to 

(E) ^ { ^ Ai (A^ P l ) + ^ (Ai)' <A"»Pl)} 

where at(x, X) is an asymptotic series in À'1. Moreover (d/?i)Xo ^ 0, and the 
caustic is locally defined by the equation px = 0. 

(We note, in passing, that this formula also appears in the classical 
WKB solutions of the reduced Schrödinger equation near a turning point ; 
this appearance is also due to a fold singularity in the associated Lagran-
gian manifold.) 

We only sketch the proof of this theorem. The first step is a canonical 
form for phase functions which give a fold point. 

PROPOSITION. If (x0, £0) is a fold point then one can parametrize A near 
(x0, £0) by a phase function <j> = 0(x, 0) on X x R of the form 

(F) 0(x,0) = po(x) + P l(x)0 + 03/3 

where {dpx)XQ =fi 0. The caustic is locally defined by the equation px = 0. 

(One proof of this uses a C00 variant of an argument of Chester-Fried-
mann-Ursell [1] and another uses the Malgrange preparation theorem. 
Both proofs can be found in [2].) 

Now let a(x, 9) be a smooth function of x and 9 and let (/> be the function 
(F). By the Malgrange preparation theorem we can write 

a(x, 9) = a0(x) + a1{x)9 + h(x, 9) d(j)/d9 

in a neighborhood of (x0,0). Therefore, given an integral of the form 

f a{x, 9)ék^e) dB, 

we can by an integration by parts write it in the form 

J(oo(x) + ai(x)6 - -^f^ymx'9)de. 

By repeated application of this argument we see that the expression (D) 
can be rewritten in the simpler form 
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(G) a0(x, X) f éx^e) de + at(x9 X) f dea*{x>6) d6 

where a0(x, X) and ax(x, X) are asymptotic series in A"1. 
But we recall that the Airy function Ai(t) has an integral representation 

of the form 

Ai(0 = ^- P ei[td + e3^de. 
2 T I J _ 0 0 

Substitution of this expression into (G) yields (C). 
In [2] we present formulas analagous to (E) for some more complex 

singularities of A. In particular, simplification of (D) at points where A 
has one of the Moran singularities ( 5 1 4 , Sltltl9 etc., in the terminology of 
[7]) leads to the "generalized Airy functions" defined by Ludwig in §4 of 
his paper. The case of intersecting focal surfaces, not treated by Ludwig, 
corresponds to a S2 singularity of A. Generically, this occurs for the first 
time in 3 dimensions and there are two distinct stable cases, called hyper
bolic and elliptic in [8]. The associated generalized Airy functions are 

rr II a3 + ô 3 \ \ 
A(x, y, z) = exp m xa + yP + zap H dec dp 

and 

B(x, y,z)= j l exp ii Ixa + yP + z(a2 + j?2) + ^ da dp 

respectively. The asymptotic solution (D) simplifies to a series involving 
the functions A or B and their first partial derivatives. These results are 
proved in [2], along with an analysis of the asymptotic thickness of the 
various transition layers and relative intensities which occur. 
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