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Knowledge of the existence and structure of tangent cones plays a basic 
role in the study of the interior structure of area minimizing integral 
currents [6, §5.4] and in the study of the structure of rectifiable varifolds 
[2]. Moreover, in his study of boundary regularity of area minimizing 
currents with smooth boundary, William Allard [1] makes extensive use 
of tangent cones at points on the boundary. It is therefore to be expected 
that tangent cones will continue to play a central role in the investigation 
of the behavior at the boundary of area minimizing currents. Here we 
present results concerning the existence and structure of oriented tangent 
cones at points on the boundary of an area minimizing integral current. 
The proofs will appear elsewhere. Terminology and notation will be con
sistent with that of [6] ; see in particular the List of Notations on pp. 670 
and 671. 

I am indebted to William Allard for many stimulating discussions on 
this subject, especially with regard to Theorem 1, which he originally 
proved under stronger hypotheses. 

Our results will be given in terms of the potential theoretic function 
VdS which was first considered by Radon [9] and subsequently was used 
by J. Krai (in the case where k = n and S is obtained by integration over 
a Borel subset of Rn) in discussing the Neumann boundary value problem 
and the heat equation for domains with nonsmooth boundary [7], [8]. In 
[3] we extended the definition of VdS to the case where k is arbitrary and 
dS is replaced by a flat current T, and investigated the properties of VT. 
Let B be an oriented (n — k -\- l)-dimensional linear subspace of Rn, 
TeFk_ x{Rn\ a eRn and r > 0. We define 

FT(a, r) = na(n) f M[TlB(a, r)r^(a + g#B)] d*¥g 
JsO(n) 

where *F is the Haar measure on SO(ri) and <x(n) is the volume of the unit 
ball in Rn. In case M(T) < oo, VT(a, r) is proportional to 
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|x -a\~k\(x- a) A f(x)\ d\\T\\x. 
JB(a,r) 

We set VT{a, oo) = VT(a). Finally, it follows from the proof of [3, 7.4] that 
if T is an oriented proper (k — l)-dimensional submanifold of class 1 
whose tangent planes satisfy a Holder condition in a neighborhood of a, 
then 

f*00 l 
- VT(a, t) dt < oo, 

Jo t 

where "ƒ*" denotes "upper integral." 
We recall that a current C is an oriented cone if and only if 

Hr#C = C whenever r > 0, 

where fir (x) = rx for xeRn. Assuming Se^l°c(Rn) (the topological 
group of locally integral flat currents of dimension k) and a e Rn we also 
recall that an oriented cone C G ^l°c(Rn) is an oriented tangent cone of 
S at a if there exists a sequence of positive numbers r,- such that 

lim r- = oo and lim (jir.oT_fl)#S = C. 
./-•OO j - ^ 0 0 J 

(Here r_fl(x) = x — a for xel?n.) 
Whenever S is a fc-dimensional rectifiable current, one defines the 

k-dimensional density of S at a by 

©*(||S||,a) = lima(fc)-V*flS||B(a,r) 
r->0 

for each a e Rn such that this limit exists. 
Let M be a properly embedded submanifold of Rn of class 2. We recall 

that an integral current SGlk(R
n) is absolutely area minimizing with 

respect to M if spt S <= M and M(S) ^ M(Sr) whenever S' e Ik(R
n) with 

spt S' <= M and 35 = 3S'. Further, 5 G /i°c(i?n) is absolutely area mini
mizing with respect to M if S [ X is absolutely area minimizing with res
pect to M for each compact subset K of /?". 

THEOREM 1. Assume S G Ik(R
n) is absolutely area minimizing with respect 

to M. Then, at \\dS\\ almost all a G spt dS such that VÔS(a) < oo, there exists 
an oriented tangent cone of S. Moreover, if C is an oriented tangent cone 
of S at a, then 

(i) C G Il
k
oc(Rn) and C absolutely minimizes area with respect to Rn ; 

(ii) dC = 6P, where 8 is a positive integer and P is an oriented (k — 1)-
dimensional linear subspace of Rn ; 

(iii) 0"(||S||, a) = 0fc(||C||, 0) k 0k(||C||, x) for xeP. 
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In demonstrating the existence of a tangent cone, we first show that 
®*(||S||, a) is a real number using an argument involving computation of 
the first variation of S under the radial deformation 

h(t,z) = [1 + t\z - a\~k](z - a) for (t,z)eR x Rn ~ {a}. 

We then proceed in a manner similar to that used in the proof of [6,5.4.3] 
to obtain the analogous result for the interior problem. 

In case there exists a proper (k — l)-dimensional submanifold B of 
class 1 such that the tangent spaces of B satisfy a Holder condition and 

\\dS\\lU = 6J?k-1lB 

for some open set U and some positive integer 0, then the conclusions of 
Theorem 1 hold for each a e B. 

THEOREM 2. Assume S e Ik(R
n) is absolutely area minimizing with respect 

to M. Then, for ||5S|| almost all a e spt dS such that 

f*00 1 
(*) - VdS(a, t) dt < oo, 

J 0 t 

the conclusions of Theorem 1 are true with equality holding in (iii) whenever 
xeP. 

The proof is based on results of [3], [4], [5] and on application of the 
variational formula [2, 5.1(1)], as is also the proof of the following: 

THEOREM 3. Let P be an oriented (k — lydimensional linear subspace of 
Rn, 6 be a positive integer, and Cell

k
oc(Rn) be an absolutely area mini

mizing oriented cone such that dC = OP and @k(||C||, x) is constant for 
xe P. Then there exist distinct oriented k-dimensional closed half-planes 
ôi> • • • ? Qm and integers a 1 ? . . . , am such that 

dQi = P for i = 1 , . . . , m, 

C = (X1Qi + • • • + OLmQm and 0 = 0L1 + • • • + <Xm. 

Furthermore, ifoii>0,i = l,...,m9 then 

®*(||C||,O) = *0; 

otherwise, m = 2 and spt C = Qx u Q2 is a linear subspace of Rn with 

©k(||C||,0) = i | a 1 - a 2 | . 

Theorems 2 and 3 completely characterize the structure of tangent 
cones to S at ||3S|| almost all aeRn such that the integral (*) is finite. We 
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conclude by presenting some partial results concerning the structure of 
oriented cones for which the hypotheses of Theorem 3 do not hold. 
Theorem 1 can be extended to obtain the existence of an area minimizing 
tangent cone of S at a "corner" of dS where dS has a tangent cone whose 
support is not a (k — l)-plane. In this situation Theorem 4 is relevant. In 
case C e Iloc(Rn) is an absolutely area minimizing oriented cone such that 
ÔC is a (k — l)-plane, one can show with the help of Theorem 1 that 

0*(||C||, x) ^ ®k(\\C\l 0) for each x e spt dC. 

We do not know whether there exists C for which inequality holds at 
some x e spt dC. 

Let C e Il
k
oc(Rn) be an oriented cone such that dC = 6P where 9 is a 

positive integer and P is an oriented (k — l)-dimensional linear subspace 
of Rn. Then [4, 3.6] implies that 

0^20k(||C||,O), 

with equality holding if and only if C n 5 n _ 1 absolutely minimizes area 
with respect to S n _ 1 , in which case C absolutely minimizes area with 
respect to Rn, 

6 = 2®k(\\Clb) îorbeP, 

and Theorem 3 gives the structure of P. More generally, we have the 
following : 

THEOREM 4. Suppose CeIl
k
oc(Rn) is an oriented cone such that C n S""1 

absolutely minimizes area with respect to S" - 1 (hence C absolutely mini
mizes area with respect to Rn) and there exists a closed, oriented k-dimen-
sional half-plane Q0 with spt dC <= Q0, Denote P = dQ0. Then there exist 
oriented k-dimensional half-planes Qi,...,Qm and nonnegative integers 
<xl9..., am such that 

(i) Qj i= Ôo and dQj = P for j = 1 , . . . , m, and 

C = P(axQ± + •.. + amQm) + C [ go, P = ± 1 . 

(ii) If spt dC <= P, then C [ Q0 = j8a0g0, where a0 is a nonnegative 
integer. Moreover, dC = 6P, /3 = sign 0, 6 = a0 + ax + • • • + am and 
©k(l|C||,O) = i0. 

(iii) If P £ spt dC, then spt C cz Q0. 

The final result which we will present was communicated to us by 
William Allard. 

THEOREM 5. Let C e Il
k
0C(Rn) be an oriented cone such that dC = 6P, 

where P is an oriented (k — l)-dimensional linear subspace of Rn and 6 is 
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a positive integer. Suppose that 

d 

dtM{ht*Q = 0 
|f = 0 

whenever h is a smooth isotopy of Rn with compact support such that 
ht#P — P for all teR. (In particular this holds if C absolutely minimizes 
area.) If spt C ~ P lies in an open half-space ofRn, then there exist oriented 
k-dimensional half-planes Qi,.,Qm and positive integers a l 5 . . . , aw such 
that öQi — Pfor i — 1 , . . . , m, 

C = <*iôi 4- • • • + ocmQm and 8 = ax + • • • + am. 

ADDED IN PROOF. We have recently shown that the condition (*) in the 
hypothesis of Theorem 2 can be replaced by VdS(a) < oo. 
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