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This paper is devoted to announcing a structure theorem for von
Neumann algebras admitting a periodic homogeneous faithful state (see
Definitions 1 and 2).

Let .4 be a von Neumann algebra. Suppose that ¢ is a faithful normal
state on .#. We denote by ¢¢ the modular automorphism group of .#
associated with ¢. Let G(¢) denote the group of all automorphisms of
M which leave ¢ invariant. We introduce the following terminologies
concerning ¢.

DErFINITION 1. If there exists T > 0 such that ¢ is the identity auto-
morphism of .#, denoted by 1, then we call ¢ periodic. The smallest such
number T is called the period of ¢.

DEFINITION 2. We call ¢ homogeneous if G(¢) acts ergodically on .4 ;
that is, the fixed points of G(¢) are only scalar multiples of the identity.

DEFINITION 3. We call ¢ ergodic if {o?} is ergodic.

The ergodicity of ¢ implies the homogeneity of ¢, since {a¢} is contained
in G(¢). Furthermore, if .# admits an ergodic state, then .# must be a
factor.

Now, suppose ¢ is a periodic homogeneous faithful normal state on
M , which will be fixed throughout the discussion. Considering the cyclic
representation of .# induced by ¢, we assume that .# acts on a Hilbert
space $ with a distinguished cyclic vector &, such that ¢(x) = (x&,|&o),
x € M. According to the theory of modular Hilbert algebras (which the
author proposes to call Tomita algebras), there exists the positive self-
adjoint operator A on $ and the unitary involution J on § such that

of(x) = A'A™",  xel;
Ao = &
JMI = M, JARJ = A",

Put o = ¢72"T with T the period of ¢. Obviously, we have 0 < o < 1.
We introduce the following notations:
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M, = {x€ M:c¥(x) = «"x,t e R},
On = {£€H:A" = o™ te R},
forn=0, +£1, +£2,... . Then .#, is nothing but the centralizer .#; of

¢ in the sense of [11, Definition 8.6]. The ergodicity of G(¢) implies that
M, # {0} for every integer n. The subspace .#, of .# is also given by

M, = {xeM:P(xy) = "P(yx) for every ye .4},
due to Stgrmer [9].

LEMMA 4. We have the following :
(l) ‘/ﬂwﬂm < '/ln+ms'ﬂ;k= eﬂ—n;
(ll) Jl{ng)m < S5n+m7"5n = 55—n;
(i) § = Yo% D

(iv) 9, = [MnSo]-

It is easily seen that the algebraic direct sum Z;‘,‘; — oM, is a o-weakly
dense *-subalgebra of /. If 4" is avon Neumann subalgebra of ./ invariant
under 0¥, then thealgebraicdirectsum ) 2 _ , (4" O 4,)isalsoa o-weakly
dense *-subalgebra of A". Since M }¥M, = My and M, M} <= M,, the
absolute value |x| of every element x in .#, falls in .#,. Hence, if x € .4,
commutes with .# ,, then x commutes with x*x and xx*, so that x is normal,
that is, x*x = xx*. But this is impossible unless x is in .#, because

o"Pp(x*x) = ¢P(xx*). Thus we obtain the following:

PROPOSITION 5. The relative commutant My ™ M of My in M is contained
in My as the center of M, denoted by %,.

We denote by m, the normal representation of .#, on , defined by
restricting the action of .#, to ©,. We also define the antirepresentation
n, of M, on §, by

m(a) = Jn_ (@)*J, ae M.
For each x € ./,, we have

T(a)xEo = axdo;

m(a)xéy = xal,, x € M.

Hence 7, and 7, commute. Making use of the ergodicity of G(¢), we can
prove the following:

LeMMA 6. Both 7, and m, are faithful.
For each g € G(¢), we define a unitary operator U(g) on § by

U(g)xéo = g(x)ég, xeM.
Then the map :g e G(¢) — U(g) is a representation of G(¢) and covariant
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with the action of /. It is easily seen that
U(g)m(x)U(g)* = m,°g(x);
U(@m(x)U(g)* = m,og(x),  xe€.Mo geG(P).

The ergodicity of G(¢) on .#, yields that the coupling operator of
{m(M,), H,} in the sense of Griffin [6] is a scalar multiple of the identity.
Therefore, {rn,(#,), H,} has either a separating vector or a cyclic vector.

LEMMA 7. For n 2 1, {n,, 9,} does not have a separating vector.

PROOF. Since every & € §, is analytic for A", there exists a closed operator
a affiliated with ./ such that & = a¢,. We can choose a so that A“gA™* =
o™a. Let a = uh be the polar decomposition of a. Then h is affiliated
with #, and ue .#,. If ¢ is separating, then x¢ = 0, x € #,, implies
x = 0, so that xu = 0 implies x = 0. Hence uu* = 1. But «"¢(u*u) =
¢uu*) = 1, so that p(u*u) = a™" > 1 if n = 1, a contradiction.

Therefore, {r,,$,},n = 1, has a cyclic vector £, which is separating
for n_,(M,y). If a = ku is the right polar decomposition of the above
a in Lemma 7, then ux = 0, x € .#,, implies x = 0, so that we have
u*u = 1,and ¢(uu*) = o". We choose an element u, in #; with ufu, = 1,
and fix it. Then u} falls in 4, for n =2 1, and 4, = M ,u} because
Mut" = My. Therefore we have

'/”n= «///o“'iQ
M, ="My, n=12....

Thus the von Neumann algebra .# is generated by .#, and the isometry
u,. The choice of u, is unique in the following sense:

LEMMA 8. Every partial isometry v in My is of the form wu with a partial
isometry w in M.

Let e_, denote the projections uju’t* in 4, for n = 1. Then Lemma 8
implies, together with the ergodicity of G(¢), that

ein = a"l.

Thus we conclude that ./, is of type II,. We denote by e, the projection
Je_,J in M. Let K, = e,9,, for every integer n.

Define an isomorphism 6 of .#, onto e_,.#,e_, by 0(x) = u,xu¥,
x € My. Then the isomorphism 0 induces an automorphism 8 of 2, by
the equality 0(a) = f(a)e_ ,, ae Z,. It follows from Lemma 8 that § does
not depend on the choice of u;.

PROPOSITION 9. The center & of M is precisely the fixed point subalgebra

of %, with respect to 0. Therefore, M is a factor if and only if 8 is ergodic on
g’o.
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PROPOSITION 10. For n = 1, we have
{Tn, Ou} = {70, R0}
{m-m 9-a} = {07 K.},
where {mn,, &,} means the restriction of ny to the invariant subspace {,.

We denote by ¢, the restriction of ¢ to #,,.

THEOREM 11. In the pre-Hilbert space metric given by the state ¢, the
von Neumann algebra M is decomposed as

M = - @u"ﬂo@ @u.ﬂo@dﬂo@dﬂoul@ @e/”oul@

The algebraic structure of (M, ) is determined by {M,,0,do} in the
following sense: Let M be another von Neumann algebra equipped with a

periodic homogeneous faithful state ¢ of period T and let M be decomposed
with respect to ¢ as

M= - @“‘//{0@ @“ﬂo@ﬂo@ﬂoul@ @'/”Oul®

Suppose U, gives rise to an isomorphism of 8 of My ontoe_ Mqe_ ;. Then
there exists an isomorphism o of M onto M with ¢ = G oo if and only if
there exists an isomorphism &, of My onto M, and a partial isometry w in
My such that wO(x)w* = a5 00oay(x), x € My, and ¢o = Gooa, where
& (resp. §o) means the restriction of ¢ (resp. §) to M (resp. M,).

Conversely, if 4, is a von Neumann algebra of type II,. Let e be a
projection of ./, with e = &, 0 < a < 1. Suppose 6 is an isomorphism of
My onto eye. Then 0 induces an automorphism & of the center %, of
M, such that B(a)e = 0(a), ae Z,. Let ¢, be a H-invariant faithful normal
state on Z,. We extend ¢, to a faithful normal trace on .#, by ¢o(x) =
do(x%), x € #M,. Suppose G denotes the group of all automorphisms g of
My such that there exists a partial isometry w, in 4, withgefog™'(x) =
w0(x)wg, and such that ¢oog = ¢, (this is satlsﬁed automatically if d is
ergodic) Such an automorphism is called admissible.

THEOREM 12. In the above situation, if G acts ergodically on the center
%, thenthere exists a von Neumann algebra ./ with a periodic homogeneous
faithful state ¢ of period T = —2r/loge such that {#,,0, .} appears in
the decomposition of M associated with ¢ as described in Theorem 11.

We denote by %(#,, 0, ¢) the von Neumann algebra determined by
(A, 0, ¢o) in Theorems 11 and 12. We can describe the automorphism
group G(¢) in terms of G and the unitary group of Z,. In order to dis-
tinguish the algebraic type of K(4,, 6, ¢,), we employ new results of
A. Connes (4] concerning modular automorphism groups.
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For a von Neumann algebra .#, let Aut(.#) (resp. Int(.#)) denote the
group of all (resp. inner) automorphisms of .#. Let Out(.#) denote the
quotient group Aut(.#)/Int(.#). A. Connes showed recently that the
canonical image ¢¢ of the modular automorphism group ¢ in Out(.#)
does not depend on the choice of ¢; hence we denote it simply by 4,.
Furthermore he proved that if ¢% is inner for some T > 0, then ¢% is
given by a unitary operator in the center of the centralizer .# of ¢.

Now, we return to the original situation. In order to avoid any possible
confusion, we denote by T, the period of our state ¢.

THEOREM 13. For T > 0, a{ is inner, that is, 6 = identity, if and only
if «~'T is a point spectrum of the automorphism 0 of Z,.

Therefore, if we have ergodic automorphisms 8 in %, of different point
spectral type, then the resulting factors (.4, 0, ¢,) are nonisomorphic.

ExaMmPLES. Let # denote a hyperfinite I1,-factor and &/ = L*(0, 1). Let
My=F @®. For 0 <a <1, we choose a projection fe F with
1(f) = a, where 7 is the canonical trace of &. It is then known that there
exists an isomorphism 6, of & onto fZf. Let § be an ergodic automor-
phism of &/ with invariant faithful normal state u. Let 6, = 0, ® 8 and
¢o = T @ u. Then the triplet {#,,0, §,} satisfies all our requirements,
since the automorphism id ® 8", n = 0 + 1, +2, ..., are admissible and
ergodic on the center & = 1 ® /. Thus, if we choose various kinds of

ergodic automorphisms f, then we get different kinds of modular groups
¢, as well as different factors.
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