PERIODIC AND HOMOGENEOUS STATES ON A VON NEUMANN ALGEBRA. I¹

BY MASAMICHI TAKESAKI

Communicated by Jack E. Feldman, June 14, 1972

This paper is devoted to announcing a structure theorem for von Neumann algebras admitting a periodic homogeneous faithful state (see Definitions 1 and 2).

Let \mathcal{M} be a von Neumann algebra. Suppose that ϕ is a faithful normal state on \mathcal{M} . We denote by σ_i^{ϕ} the modular automorphism group of \mathcal{M} associated with ϕ . Let $G(\phi)$ denote the group of all automorphisms of \mathcal{M} which leave ϕ invariant. We introduce the following terminologies concerning ϕ .

DEFINITION 1. If there exists T > 0 such that σ_T^{ϕ} is the identity automorphism of \mathcal{M} , denoted by ι , then we call ϕ periodic. The smallest such number T is called the period of ϕ .

DEFINITION 2. We call ϕ homogeneous if $G(\phi)$ acts ergodically on \mathcal{M} ; that is, the fixed points of $G(\phi)$ are only scalar multiples of the identity.

DEFINITION 3. We call ϕ ergodic if $\{\sigma_t^{\phi}\}$ is ergodic.

The ergodicity of ϕ implies the homogeneity of ϕ , since $\{\sigma_t^{\phi}\}$ is contained in $G(\phi)$. Furthermore, if \mathcal{M} admits an ergodic state, then \mathcal{M} must be a factor.

Now, suppose ϕ is a periodic homogeneous faithful normal state on \mathcal{M} , which will be fixed throughout the discussion. Considering the cyclic representation of \mathcal{M} induced by ϕ , we assume that \mathcal{M} acts on a Hilbert space \mathfrak{H} with a distinguished cyclic vector ξ_0 such that $\phi(x) = (x\xi_0|\xi_0)$, $x \in \mathcal{M}$. According to the theory of modular Hilbert algebras (which the author proposes to call Tomita algebras), there exists the positive self-adjoint operator Δ on \mathfrak{H} and the unitary involution J on \mathfrak{H} such that

$$\begin{split} &\sigma_t^\phi(x) = \Delta^{it} x \Delta^{-it}, \qquad x \in \mathcal{M}\,; \\ &\Delta^{it} \xi_0 = \xi_0\,; \\ &J \mathcal{M} J = \mathcal{M}'\,; \qquad J \Delta^{it} J = \Delta^{it}. \end{split}$$

Put $\alpha = e^{-2\pi/T}$ with T the period of ϕ . Obviously, we have $0 < \alpha < 1$. We introduce the following notations:

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. von Neumann algebras, modular automorphism group, periodic state, homogeneous state.

¹ The preparation of this paper was supported in part by NSF grant GP-28737.

$$\mathcal{M}_n = \{ x \in \mathcal{M} : \sigma_t^{\phi}(x) = \alpha^{int} x, t \in \mathbf{R} \},$$

$$\mathfrak{H}_n = \{ \xi \in \mathfrak{H} : \Delta^{it} \xi = \alpha^{int} \xi, t \in \mathbf{R} \},$$

for $n = 0, \pm 1, \pm 2, \ldots$. Then \mathcal{M}_0 is nothing but the centralizer \mathcal{M}_{ϕ} of ϕ in the sense of [11, Definition 8.6]. The ergodicity of $G(\phi)$ implies that $\mathcal{M}_n \neq \{0\}$ for every integer n. The subspace \mathcal{M}_n of \mathcal{M} is also given by

$$\mathcal{M}_n = \{ x \in \mathcal{M} : \phi(xy) = \alpha^n \phi(yx) \text{ for every } y \in \mathcal{M} \},$$

due to Størmer [9].

LEMMA 4. We have the following:

- (i) $\mathcal{M}_n \mathcal{M}_m \subset \mathcal{M}_{n+m}, \mathcal{M}_n^* = \mathcal{M}_{-n}$;
- (ii) $\mathcal{M}_n \mathfrak{H}_m \subset \mathfrak{H}_{n+m}, J\mathfrak{H}_n = \mathfrak{H}_{-n};$ (iii) $\mathfrak{H} = \sum_{n=-\infty}^{\infty} \mathfrak{H}_n;$
- (iv) $\mathfrak{H}_n = [\mathcal{M}_n \xi_0].$

It is easily seen that the algebraic direct sum $\sum_{n=-\infty}^{\infty} \mathcal{M}_n$ is a σ -weakly dense *-subalgebra of \mathcal{M} . If \mathcal{N} is a von Neumann subalgebra of \mathcal{M} invariant under σ_t^{ϕ} , then the algebraic direct sum $\sum_{n=-\infty}^{\infty} (\mathcal{N} \cap \mathcal{M}_n)$ is also a σ -weakly dense *-subalgebra of \mathcal{N} . Since $\mathcal{M}_n^{-}\mathcal{M}_n \subset \mathcal{M}_0$ and $\mathcal{M}_n\mathcal{M}_n^* \subset \mathcal{M}_0$, the absolute value |x| of every element x in \mathcal{M}_n falls in \mathcal{M}_0 . Hence, if $x \in \mathcal{M}_n$ commutes with \mathcal{M}_0 , then x commutes with x^*x and xx^* , so that x is normal, that is, $x^*x = xx^*$. But this is impossible unless x is in \mathcal{M}_0 because $\alpha^n \phi(x^*x) = \phi(xx^*)$. Thus we obtain the following:

PROPOSITION 5. The relative commutant $\mathcal{M}'_0 \cap \mathcal{M}$ of \mathcal{M}_0 in \mathcal{M} is contained in \mathcal{M}_0 as the center of \mathcal{M}_0 , denoted by \mathcal{Z}_0 .

We denote by π_n the normal representation of \mathcal{M}_0 on \mathfrak{H}_n defined by restricting the action of \mathcal{M}_0 to \mathfrak{H}_n . We also define the antirepresentation π'_n of \mathcal{M}_0 on \mathfrak{H}_n by

$$\pi'_n(a) = J\pi_{-n}(a)^*J, \qquad a \in \mathcal{M}_0.$$

For each $x \in \mathcal{M}_n$, we have

$$\pi_n(a)x\xi_0 = ax\xi_0;$$

$$\pi'_n(a)x\xi_0 = xa\xi_0, \qquad x \in \mathcal{M}_0.$$

Hence π_n and π'_n commute. Making use of the ergodicity of $G(\phi)$, we can prove the following:

LEMMA 6. Both π_n and π'_n are faithful.

For each $g \in G(\phi)$, we define a unitary operator U(g) on \mathfrak{H} by

$$U(g)x\xi_0 = g(x)\xi_0, \qquad x \in \mathcal{M}.$$

Then the map $g \in G(\phi) \mapsto U(g)$ is a representation of $G(\phi)$ and covariant

with the action of \mathcal{M} . It is easily seen that

$$\begin{split} &U(g)\pi_{n}(x)U(g)^{*}=\pi_{n}\circ g(x)\,;\\ &U(g)\pi_{n}'(x)U(g)^{*}=\pi_{n}'\circ g(x),\qquad x\in\mathcal{M}_{0},g\in G(\phi). \end{split}$$

The ergodicity of $G(\phi)$ on \mathcal{M}_0 yields that the coupling operator of $\{\pi_n(\mathcal{M}_0), \mathfrak{H}_n\}$ in the sense of Griffin [6] is a scalar multiple of the identity. Therefore, $\{\pi_n(\mathcal{M}_0), \mathfrak{H}_n\}$ has either a separating vector or a cyclic vector.

LEMMA 7. For $n \ge 1$, $\{\pi_n, \mathfrak{H}_n\}$ does not have a separating vector.

PROOF. Since every $\xi \in \mathfrak{H}_n$ is analytic for Δ^{it} , there exists a closed operator a affiliated with \mathcal{M} such that $\xi = a\xi_0$. We can choose a so that $\Delta^{it}a\Delta^{-it} = \alpha^{int}a$. Let a = uh be the polar decomposition of a. Then h is affiliated with \mathcal{M}_0 and $u \in \mathcal{M}_n$. If ξ is separating, then $x\xi = 0$, $x \in \mathcal{M}_0$, implies x = 0, so that xu = 0 implies x = 0. Hence $uu^* = 1$. But $\alpha^n \phi(u^*u) = \phi(uu^*) = 1$, so that $\phi(u^*u) = \alpha^{-n} > 1$ if $n \ge 1$, a contradiction.

Therefore, $\{\pi_n, \mathfrak{H}_n\}$, $n \ge 1$, has a cyclic vector ξ , which is separating for $\pi'_{-n}(\mathcal{M}_0)$. If a = ku is the right polar decomposition of the above a in Lemma 7, then ux = 0, $x \in \mathcal{M}_0$, implies x = 0, so that we have $u^*u = 1$, and $\phi(uu^*) = \alpha^n$. We choose an element u_1 in \mathcal{M}_1 with $u_1^*u_1 = 1$, and fix it. Then u_1^n falls in \mathcal{M}_n for $n \ge 1$, and $\mathcal{M}_n = \mathcal{M}_0 u_1^n$ because $\mathcal{M}_n u_1^{*n} \subset \mathcal{M}_0$. Therefore we have

$$\mathcal{M}_n = \mathcal{M}_0 u_1^n;$$

 $\mathcal{M}_{-n} = u_1^{*n} \mathcal{M}_0, \qquad n = 1, 2, \dots.$

Thus the von Neumann algebra \mathcal{M} is generated by \mathcal{M}_0 and the isometry u_1 . The choice of u_1 is unique in the following sense:

Lemma 8. Every partial isometry v in \mathcal{M}_1 is of the form wu_1 with a partial isometry w in \mathcal{M}_0 .

Let e_{-n} denote the projections $u_1^n u_1^{n*}$ in \mathcal{M}_0 for $n \ge 1$. Then Lemma 8 implies, together with the ergodicity of $G(\phi)$, that

$$e^{\frac{h}{n}} = \alpha^n 1.$$

Thus we conclude that \mathcal{M}_0 is of type II₁. We denote by e_n the projection $Je_{-n}J$ in \mathcal{M}'_0 . Let $\mathfrak{R}_n=e_n\mathfrak{H}_0$, for every integer n.

Define an isomorphism θ of \mathcal{M}_0 onto $e_{-1}\mathcal{M}_0e_{-1}$ by $\theta(x) = u_1xu_1^*$, $x \in \mathcal{M}_0$. Then the isomorphism θ induces an automorphism $\tilde{\theta}$ of \mathcal{Z}_0 by the equality $\theta(a) = \tilde{\theta}(a)e_{-1}$, $a \in \mathcal{Z}_0$. It follows from Lemma 8 that $\tilde{\theta}$ does not depend on the choice of u_1 .

PROPOSITION 9. The center \mathscr{Z} of \mathscr{M} is precisely the fixed point subalgebra of \mathscr{Z}_0 with respect to $\tilde{\theta}$. Therefore, \mathscr{M} is a factor if and only if $\tilde{\theta}$ is ergodic on \mathscr{Z}_0 .

Proposition 10. For $n \ge 1$, we have

$$\begin{aligned} \{\pi_n, \mathfrak{H}_n\} &\cong \{\pi_0, \mathfrak{R}_n\}; \\ \{\pi_{-n}, \mathfrak{H}_{-n}\} &\cong \{\theta^n, \mathfrak{R}_{-n}\}, \end{aligned}$$

where $\{\pi_0, \Re_n\}$ means the restriction of π_0 to the invariant subspace \Re_n .

We denote by ϕ_0 the restriction of ϕ to \mathcal{M}_0 .

THEOREM 11. In the pre-Hilbert space metric given by the state ϕ , the von Neumann algebra \mathcal{M} is decomposed as

$$\mathscr{M} = \cdots \oplus u_1^{*n} \mathscr{M}_0 \oplus \cdots \oplus u_1^{*n} \mathscr{M}_0 \oplus \mathscr{M}_0 \oplus \mathscr{M}_0 u_1 \oplus \cdots \oplus \mathscr{M}_0 u_1^{n} \oplus \cdots$$

The algebraic structure of (\mathcal{M},ϕ) is determined by $\{\mathcal{M}_0,\theta,\phi_0\}$ in the following sense: Let $\overline{\mathcal{M}}$ be another von Neumann algebra equipped with a periodic homogeneous faithful state $\overline{\phi}$ of period T and let $\overline{\mathcal{M}}$ be decomposed with respect to $\overline{\phi}$ as

$$\overline{\mathcal{M}} = \cdots \oplus \overline{u}_1^* \overline{\mathcal{M}}_0 \oplus \cdots \oplus \overline{u}_1^* \overline{\mathcal{M}}_0 \oplus \overline{\mathcal{M}}_0 \oplus \overline{\mathcal{M}}_0 \overline{u}_1 \oplus \cdots \oplus \overline{\mathcal{M}}_0 \overline{u}_1^n \oplus \cdots$$

Suppose \overline{u}_1 gives rise to an isomorphism of $\overline{\theta}$ of $\overline{\mathcal{M}}_0$ onto $\overline{e}_{-1}\mathcal{M}_0\overline{e}_{-1}$. Then there exists an isomorphism σ of \mathcal{M} onto $\overline{\mathcal{M}}$ with $\phi = \overline{\phi} \circ \sigma$ if and only if there exists an isomorphism σ_0 of \mathcal{M}_0 onto $\overline{\mathcal{M}}_0$ and a partial isometry w in \mathcal{M}_0 such that $w\theta(x)w^* = \sigma_0^{-1} \circ \overline{\theta} \circ \sigma_0(x), x \in \mathcal{M}_0$, and $\phi_0 = \overline{\phi}_0 \circ \sigma$, where ϕ_0 (resp. $\overline{\phi}_0$) means the restriction of ϕ (resp. $\overline{\phi}_0$) to \mathcal{M}_0 (resp. $\overline{\mathcal{M}}_0$).

Conversely, if \mathcal{M}_0 is a von Neumann algebra of type II₁. Let e be a projection of \mathcal{M}_0 with $e^{\natural} = \alpha$, $0 < \alpha < 1$. Suppose θ is an isomorphism of \mathcal{M}_0 onto $e\mathcal{M}_0e$. Then θ induces an automorphism $\tilde{\theta}$ of the center \mathcal{Z}_0 of \mathcal{M}_0 such that $\tilde{\theta}(a)e = \theta(a)$, $a \in \mathcal{Z}_0$. Let ϕ_0 be a $\tilde{\theta}$ -invariant faithful normal state on \mathcal{Z}_0 . We extend ϕ_0 to a faithful normal trace on \mathcal{M}_0 by $\phi_0(x) = \phi_0(x^{\natural})$, $x \in \mathcal{M}_0$. Suppose G denotes the group of all automorphisms g of \mathcal{M}_0 such that there exists a partial isometry w_g in \mathcal{M}_0 with $g \circ \theta \circ g^{-1}(x) = w_g \theta(x) w_g^*$, and such that $\phi_0 \circ g = \phi_0$ (this is satisfied automatically if $\tilde{\theta}$ is ergodic). Such an automorphism is called admissible.

Theorem 12. In the above situation, if G acts ergodically on the center \mathscr{Z}_0 , then there exists a von Neumann algebra \mathscr{M} with a periodic homogeneous faithful state ϕ of period $T = -2\pi/\log \alpha$ such that $\{\mathscr{M}_0, \theta, \phi_0\}$ appears in the decomposition of \mathscr{M} associated with ϕ as described in Theorem 11.

We denote by $\mathcal{R}(\mathcal{M}_0, \theta, \phi_0)$ the von Neumann algebra determined by $(\mathcal{M}_0, \theta, \phi_0)$ in Theorems 11 and 12. We can describe the automorphism group $G(\phi)$ in terms of G and the unitary group of \mathcal{Z}_0 . In order to distinguish the algebraic type of $\Re(\mathcal{M}_0, \theta, \phi_0)$, we employ new results of A. Connes [4] concerning modular automorphism groups.

For a von Neumann algebra \mathcal{M} , let $Aut(\mathcal{M})$ (resp. $Int(\mathcal{M})$) denote the group of all (resp. inner) automorphisms of \mathcal{M} . Let $Out(\mathcal{M})$ denote the quotient group $Aut(\mathcal{M})/Int(\mathcal{M})$. A. Connes showed recently that the canonical image $\dot{\sigma}_t^{\phi}$ of the modular automorphism group σ_t^{ϕ} in Out(\mathcal{M}) does not depend on the choice of ϕ ; hence we denote it simply by $\dot{\sigma}_t$. Furthermore he proved that if σ_T^{ϕ} is inner for some T > 0, then σ_T^{ϕ} is given by a unitary operator in the center of the centralizer \mathcal{M}_{ϕ} of ϕ .

Now, we return to the original situation. In order to avoid any possible confusion, we denote by T_0 the period of our state ϕ .

THEOREM 13. For T > 0, σ_T^{ϕ} is inner, that is, $\dot{\sigma}_T = \text{identity}$, if and only if α^{-iT} is a point spectrum of the automorphism $\tilde{\theta}$ of \mathscr{Z}_0 .

Therefore, if we have ergodic automorphisms $\tilde{\theta}$ in \mathscr{Z}_0 of different point spectral type, then the resulting factors $\mathcal{R}(\mathcal{M}_0, \theta, \phi_0)$ are nonisomorphic.

Examples. Let \mathscr{F} denote a hyperfinite II₁-factor and $\mathscr{A} = L^{\infty}(0, 1)$. Let $\mathcal{M}_0 = \mathcal{F} \otimes \mathcal{A}$. For $0 < \alpha < 1$, we choose a projection $f \in \mathcal{F}$ with $\tau(f) = \alpha$, where τ is the canonical trace of \mathscr{F} . It is then known that there exists an isomorphism θ_1 of ${\mathscr F}$ onto $f{\mathscr F} f$. Let $\tilde{\theta}$ be an ergodic automorphism of ${\mathscr A}$ with invariant faithful normal state μ . Let $\theta_0=\theta_1\otimes\tilde{\theta}$ and $\phi_0 = \tau \otimes \mu$. Then the triplet $\{\mathcal{M}_0, \theta, \phi_0\}$ satisfies all our requirements, since the automorphism id $\otimes \hat{\theta}^n$, $n = 0 \pm 1, \pm 2, \ldots$, are admissible and ergodic on the center $\mathcal{Z}_0 = 1 \otimes \mathcal{A}$. Thus, if we choose various kinds of ergodic automorphisms $\tilde{\theta}$, then we get different kinds of modular groups $\dot{\sigma}_t$ as well as different factors.

REFERENCES

- 1. H. Araki and E. J. Woods, A classification of factors, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968/69), 51–130. MR 39 #6087.
- 2. A. Connes, Un nouvel invariant pour les algèbres de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A900-A903.
- 3. —, Calcul des deux invariants d'Araki et Woods par la théorie de Tomita et Takesaki, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A175-A177.
- -, Groupe modulaire d'une algebre de von Neumann de genre denombrable (to appear).
- 5. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
- 6. E. L. Griffin, Jr., Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc. 75 (1953), 471-504. MR 15, 539.
- 7. R. H. Herman and M. Takesaki, States and automorphism groups of operator algebras, Comm. Math. Phys. 19 (1970), 142-160. MR 42 #5060.
- 8. R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138–171. MR 36 #1989.
 9. E. Størmer, Spectra of states, and asymptotically abelian C*-algebras (to appear).
- 10. M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 #5061.
- -, States and automorphisms of operator algebras. Standard representations and the Kubo-Martin-Schwinger boundary condition, Summer Rencontres in Mathematics and Physics, Battelle Seattle, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024