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For an arbitrary positive integer n, let Zn denote the cyclic group of 
order n, and let Pn = S1 u„ e2 be the pseudo-projective plane of order n. 

THEOREM. Let X be a connected finite 2-dimensional CW-complex with 
fundamental group Zn. Then 

(l)X has the homotopy type of the sum Pn v S2 v • • • v S2 of the pseudo-
projective plane Pn and rank H2(X)-copies of the 2-sphere S2. 

(2) There is a homotopy equivalence f :X -• Pn v S2 v • • • v S2 realizing 
any prescribed Whitehead torsion T( ƒ ) e Wh (Z„). 

The result (1) was established in the prime order case by W. H. Cock-
croft and R. G. Swan [3]. The work of P. Olum on the self-equivalences of 
the pseudo-projective plane Pn ([6], [7]) shows that every element of the 
Whitehead group Wh (ZM) is realized as the torsion of some self-equival
ence Pn -* P„, so that (2) is a consequence of (1). 

COROLLARY. For connected finite 2-dimensional CW-complexes with 
finite cyclic fundamental group, homotopy type and simple homotopy type 
coincide. 

This generalizes to the nonprime order case a recent observation of 
W. H. Cockcroft and R. M. F. Moss [2]. 

SKETCH OF A PROOF OF THE THEOREM. Each CW-complex under 
consideration has the simple homotopy type of a complex P that is 
modeled in an obvious fashion on some presentation 9 = < a l 5 . . . , ak\ 
^ i , . . . , rm> (m ^ k) of the cyclic group Zn. There are Nielsen transfor
mations which reduce such a presentation to one of pre-Abelian form 
[5, p. 140] 

2 = <bu...,bk:b1Wl9...,bk-1Wk-1MW»W^^ 

where the exponent sum of each word Wt with respect to each generator 
bj is zero. Moreover, this Nielsen reduction 9 -> J corresponds to a 
simple homotopy equivalence P ~> Q of the associated topological 
models. Associated with each topological model P of a presentation 9 is 
the cellular chain complex Q(P) of its universal covering P ; the chain 
groups are free Z„-modules which we give preferred bases according to a 
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specific natural system. The chain complex C* = Q((5) with its preferred 
bases is 

c2(Ô) Ci(ö) ai Co(Ô) 

{ M l , . . . , » m } i M ^ - - - ^ } < 0 °"-M {z} 
where {,...,} is the free Z„-module with the enclosed basis, and x is the 
generator of the multiplicative cyclic group Zn. 

Using Jacobinski's cancellation theorem for projective ZM-modules 
([4], [8, p. 215], [9, p. 178]), it is possible to choose a new basis wx,..., ww 

for the chain group C2 = C2(Q) such that the matrix of the boundary 
operation d2:C2(Q) -• C^Q) with respect to this new basis for C2 and 
the old basis vx,..., vk for Cx is 

/l 0 0 0 

A = 

0 

,0 
where the identity block is a (k 

v . n - 1 

1 0 

0 N 0 0/ 
1) x (k — 1) matrix and where N = 

1 + x + • • • + xw_1 is in the integral group ring of Z„. The chain com
plex C^ with the new preferred basis for C2 takes the form 

C2 C^ C0 

II II II 
{wi,...,wm}-^{vi,...,vk}^^zX) {z}. 

With these preferred bases, the chain complex C* is realizable as the 
cellular chain complex CJJl) of the universal covering R of the complex 
JR modeled on the presentation 01 = <Cj,.. . , ck :cx,..., cfc_ x, c£, 1 , . . . , 1> 
with m — k trivial relators. The identity map between the chain complexes 
Q(R) and Q((5) can be realized by a map f:R -> Q that is necessarily a 
homotopy equivalence. This completes the proof of the theorem since 
the space R modeled on the presentation ai has the simple homotopy 
type of the sum Pn v S2 v • • • v S2 of the pseudo-projective plane Pn 

and m — k copies of the 2-sphere S2. 
Full details of these and related results will appear elsewhere. 
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