A HOMOTOPY CLASSIFICATION OF 2-COMPLEXES WITH FINITE CYCLIC FUNDAMENTAL GROUP

BY MICHEAL N. DYER AND ALLAN J. SIERADSKI Communicated by M. L. Curtis, June 5, 1972

For an arbitrary positive integer *n*, let Z_n denote the cyclic group of order *n*, and let $P_n = S^1 \cup_n e^2$ be the pseudo-projective plane of order *n*.

THEOREM. Let X be a connected finite 2-dimensional CW-complex with fundamental group Z_n . Then

(1) X has the homotopy type of the sum $P_n \vee S^2 \vee \cdots \vee S^2$ of the pseudoprojective plane P_n and rank $H_2(X)$ -copies of the 2-sphere S^2 .

(2) There is a homotopy equivalence $f: X \to P_n \vee S^2 \vee \cdots \vee S^2$ realizing any prescribed Whitehead torsion $\tau(f) \in Wh(Z_n)$.

The result (1) was established in the prime order case by W. H. Cockcroft and R. G. Swan [3]. The work of P. Olum on the self-equivalences of the pseudo-projective plane P_n ([6], [7]) shows that every element of the Whitehead group Wh (Z_n) is realized as the torsion of some self-equivalence $P_n \rightarrow P_n$, so that (2) is a consequence of (1).

COROLLARY. For connected finite 2-dimensional CW-complexes with finite cyclic fundamental group, homotopy type and simple homotopy type coincide.

This generalizes to the nonprime order case a recent observation of W. H. Cockcroft and R. M. F. Moss [2].

SKETCH OF A PROOF OF THE THEOREM. Each CW-complex under consideration has the simple homotopy type of a complex P that is modeled in an obvious fashion on some presentation $\mathscr{P} = \langle a_1, \ldots, a_k : r_1, \ldots, r_m \rangle$ $(m \ge k)$ of the cyclic group Z_n . There are Nielsen transformations which reduce such a presentation to one of pre-Abelian form [5, p. 140]

$$\mathcal{Q} = \langle b_1, \ldots, b_k : b_1 W_1, \ldots, b_{k-1} W_{k-1}, b_k^n W_k, W_{k+1}, \ldots, W_m \rangle,$$

where the exponent sum of each word W_i with respect to each generator b_j is zero. Moreover, this Nielsen reduction $\mathscr{P} \to \mathscr{Q}$ corresponds to a simple homotopy equivalence $P \to Q$ of the associated topological models. Associated with each topological model P of a presentation \mathscr{P} is the cellular chain complex $C_*(\tilde{P})$ of its universal covering \tilde{P} ; the chain groups are free Z_q -modules which we give preferred bases according to a

AMS (MOS) subject classifications (1969). Primary 5540.

Copyright © American Mathematical Society 1973

specific natural system. The chain complex $C_* = C_*(\tilde{Q})$ with its preferred bases is

$$\begin{array}{cccc} C_2(\tilde{Q}) & C_1(\tilde{Q}) & \partial_1 & C_0(\tilde{Q}) \\ \| & \| & \| & \| \\ \{u_1, \dots, u_m\} \xrightarrow{\partial_2} \{v_1, \dots, v_k\} \xrightarrow{(0, \dots, 0, x-1)} \{z\} \end{array}$$

where $\{, \ldots, \}$ is the free Z_n -module with the enclosed basis, and x is the generator of the multiplicative cyclic group Z_n .

Using Jacobinski's cancellation theorem for projective Z_n -modules ([4], [8, p. 215], [9, p. 178]), it is possible to choose a new basis w_1, \ldots, w_m for the chain group $C_2 = C_2(\tilde{Q})$ such that the matrix of the boundary operation $\partial_2: C_2(\tilde{Q}) \to C_1(\tilde{Q})$ with respect to this new basis for C_2 and the old basis v_1, \ldots, v_k for C_1 is

$$A = \begin{pmatrix} 1 & & 0 & 0 & & 0 \\ & \cdot & & & & & \\ & & \cdot & & & & \\ 0 & & & 1 & 0 & & \\ 0 & & & 0 & N & 0 & 0 \end{pmatrix}$$

where the identity block is a $(k-1) \times (k-1)$ matrix and where $N = 1 + x + \cdots + x^{n-1}$ is in the integral group ring of Z_n . The chain complex C_* with the new preferred basis for C_2 takes the form

$$\begin{array}{cccc} C_2 & C_1 & C_0 \\ \parallel & \parallel & \parallel \\ \{w_1,\ldots,w_m\} \xrightarrow{\mathcal{A}} \{v_1,\ldots,v_k\} \xrightarrow{(0,\ldots,x-1)} \{z\}. \end{array}$$

With these preferred bases, the chain complex C_* is realizable as the cellular chain complex $C_*(\tilde{R})$ of the universal covering \tilde{R} of the complex R modeled on the presentation $\mathscr{R} = \langle c_1, \ldots, c_k : c_1, \ldots, c_{k-1}, c_k^n, 1, \ldots, 1 \rangle$ with m - k trivial relators. The identity map between the chain complexes $C_*(\tilde{R})$ and $C_*(\tilde{Q})$ can be realized by a map $f: R \to Q$ that is necessarily a homotopy equivalence. This completes the proof of the theorem since the space R modeled on the presentation \mathscr{R} has the simple homotopy type of the sum $P_n \vee S^2 \vee \cdots \vee S^2$ of the pseudo-projective plane P_n and m - k copies of the 2-sphere S^2 .

Full details of these and related results will appear elsewhere.

BIBLIOGRAPHY

1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.

2. W. H. Cockcroft and R. M. F. Moss, On the homotopy type of certain two-dimensional complexes, Proc. London Math. Soc. (3) 11 (1961), 193-202.

3. W. H. Cockcroft and R. G. Swan, On the homotopy type of certain two-dimensional complexes, Proc. London Math. Soc. (3) 11 (1961), 194–202. MR 23 #A3567.
4. H. Jacobinski, Genera and decompositions of lattices over orders, Acta. Math. 121

4. H. Jacobinski, Genera and decompositions of lattices over orders, Acta. Math. **121** (1968), 1–29. MR **40** # 4294.

5. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617.

6. P. Olum, Self-equivalences of pseudo-projective planes, Topology 4 (1965), 109-127. MR 31 #2725.

7. _____, Self-equivalences of pseudo-projective planes. II, Topology 10 (1971); 257-260. 8. I. Reiner, Survey of integral representation theory, Bull. Amer. Math. Soc. 76 (1970), 159-227. MR 40 # 7302.

9. R. Swan, K-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer-Verlag, Berlin and New York, 1970.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403