GROUP ACTIONS ON POINCARÉ DUALITY SPACES

BY THEODORE CHANG AND TOR SKJELBRED Communicated by S. S. Chern, April 21, 1972

Let $G = Z_p$ for p prime and $K = Z_p$, or let $G = S^1$ and K = Q, and let G act on the compact space X. In this paper, we outline two proofs of the following:

THEOREM. Suppose the compact G-space X is a Poincaré duality space over K of formal dimension n. Then each connected component of the fixed point set is a Poincaré duality space over K, and, if $G \neq Z_2$, has formal dimension congruent to $n \mod 2$.

This solves affirmatively the conjecture of Su given in [5].

Let $E_G oup B_G$ be the universal bundle for G and let X_G be the balanced product $(X imes E_G)/G$. The basic tools for both proofs are the fibre space $X oup X_G oup B_G$ and the localization theorem of Borel ([1], [4]). In the case X is totally nonhomologous to zero in X_G , Bredon has proven the Su conjecture [2]. However, this condition can be replaced by the two lemmas below, and this constitutes our algebraic proof. The second proof involves applying the localization theorem to a Thom space.

We wish to thank our advisor Wu-yi Hsiang for his suggestions and encouragement.

1. Algebraic proof. When $G = S^1$ or Z_2 , $H^*(B_G) = K[t]$ where t is of degree two in the S^1 case and of degree one in the Z_2 case. If $G = Z_p$ for p odd, then $H^*(B_G) = K[t, s]/s^2 = 0$ where s has degree one and t degree two. We consider the cohomology spectral sequence of the fibre space $X \to X_G \to B_G$.

LEMMA 1. (1_r) E_r is generated over K[t] by $E_r^{0,*}$ and $E_r^{1,*}$ for $G \neq Z_2$ or S^1 , and by $E_r^{0,*}$ for $G = Z_2$ or S^1 .

 (2_r) If $j \ge r-1$, cup product with t gives an isomorphism of $E_r^{j,k}$ into $E_r^{j+2,k}$ for $G \ne Z_2$ and of $E_r^{j,k}$ into $E_r^{j+1,k}$ for $G = Z_2$ $(r \ge 2)$.

LEMMA 2. Suppose there is a fixed point. Then the fundamental class U of $H^n(X)$ survives in $E^{0,n}_{\infty}$ and if $u \in E^{0,*}_{\infty}$ is nontorsion with respect to $H^*(B_G)$, there exists a $v \in E^{0,*}_{\infty}$ such that uv = U (cup product).

Lemma 1 is proven by induction. 1_2 and 2_2 are true for $G = S^1$ since $E_2 = H^*(B_G) \otimes H^*(X)$, and for $G = Z_p$ by known results of homological

AMS 1970 subject classifications. Primary 55C35, 57B10; Secondary 55F20.

algebra (see [3]). The induction step is then shown by straightforward degree arguments.

Lemma 2 is proven by restriction to a N-dimensional orientable submanifold $B \subset B_G$ for large N. Then since $H^n(X, Z_p) = Z_p$ and Z_p has no nontrivial action on Z_p , the local coefficients are trivial in the top dimension. Thus by piecing together over neighborhoods on which $X_G|_B$ is trivial, it is easy to show that $X_G|_B$ satisfies Poincaré duality with a cohomology fundamental class [B]U where $X_G|_B$ is the portion of X_G over B and [B] is the fundamental class of B. Using the fact that the inclusion $X_G|_B \to X_G$ induces an isomorphism on $E_2^{j,k}$ for $j \leq N$ implies it induces an injection on $E_\infty^{j,k}$ for $j \leq N$, and choosing N large enough so it induces an isomorphism on $E_\infty^{0,*}$, the lemma follows by finding a class in $H^*(X_G|_B)$ dual to [B]u.

With these two lemmas the proof of Bredon is valid without change.

2. Geometric proof. We shall assume that

- (i) X can be embedded in Euclidean space as a neighborhood retract.
- (ii) X has a finite number of orbit types.

Property (i) is inherited by the fixed point set, as follows from (ii) and the equivariant embedding theorem. Because of (i) X is a Poincaré duality space over K of formal dimension n if and only if for any embedding $X \subset S^{n+r} = S$ there is an isomorphism

$$x \mapsto x \cup U : H^*(X) \to H^*(S, S - X)$$

for some $U \in H^r(S, S - X)$.

Choose a G-equivariant embedding, and use K as the coefficient field. Then $H'(S, S - X) = H'_G(S, S - X)$ and we consider U as an element of both groups, where we define for any G-pair (A, A'), $H_G^*(A, A') = H^*(A_G, A'_G)$. By induction on the cells in B_G , we see that there is an isomorphism

$$\cup U: H_G^*(X) \to H_G^*(S, S - X).$$

Let Σ be the fixed sphere in S and $F = X \cap \Sigma$ the fixed set in X. Then the following diagram is commutative:

$$H_{G}^{*}(S, S - X) \xrightarrow{i^{*}} H_{G}^{*}(\Sigma, \Sigma - F)$$

$$\cong \bigcap_{i^{*}} \cup U \qquad \bigcap_{i^{*}(U)} \cup i^{*}(U)$$

$$H_{G}^{*}(X) \xrightarrow{i^{*}} H_{G}^{*}(F)$$

After localizing, the maps i^* and hence all the maps in the diagram are isomorphisms. Localizing here means tensoring over $K[t] \subset H^*(B_G)$ with $K[t, t^{-1}]$. The map on the right splits according to the connected

components of F, so we may assume F is connected. Then

$$i^*(U) = t^a u_0 + t^{a-1} u_1 + \ldots + u_a + sv$$

where $u_i \in H^*(\Sigma, \Sigma - F)$, $u_0 \neq 0$, and s = 0 if $G = \mathbb{Z}_2$ or S^1 . Hence

$$\cup u_0: H^*(F) \to H^*(\Sigma, \Sigma - F)$$

is an isomorphism, so F is a Poincaré duality space over K.

REFERENCES

- A. Borel, Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N.J., 1960. MR 22 # 7129.
 G. Bredon, The cohomology ring structure of a fixed point set, Ann. of Math. (2) 80 (1964), 524-537. MR 32 # 1698.
- H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040.
 W. Y. Hsiang, On some fundamental theorems in cohomology theory of topological
- transformation groups, Taita (Nat. Taiwan Univ.) J. Math. 2 (1970), 61-87.

 5. J. C. Su, Periodic transformations on the product of two spheres, Trans. Amer. Math. Soc. 112 (1964), 369-380. MR 29 #612.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720 (Current address of Tor Skjelbred)

Current address (Theodore Chang): Department of Mathematics, University of Kansas, Lawrence, Kansas 66044