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Let G = Zp for p prime and K = Zp, or let G = S1 and K = g, and 
let G act on the compact space X. In this paper, we outline two proofs of 
the following: 

THEOREM. Suppose the compact G-space X is a Poincaré duality space 
over K of formal dimension n. Then each connected component of the fixed 
point set is a Poincaré duality space over K, and, if G ^ Z2 , has formal 
dimension congruent to n mod 2. 

This solves affirmatively the conjecture of Su given in [5]. 
Let EG -» BG be the universal bundle for G and let XG be the balanced 

product (X x EG)/G. The basic tools for both proofs are the fibre space 
X -• XG -• BG and the localization theorem of Borel ([1], [4]). In the 
case X is totally nonhomologous to zero in XG, Bredon has proven the 
Su conjecture [2], However, this condition can be replaced by the two 
lemmas below, and this constitutes our algebraic proof. The second 
proof involves applying the localization theorem to a Thorn space. 

We wish to thank our advisor Wu-yi Hsiang for his suggestions and 
encouragement. 

1. Algebraic proof. When G = S1 or Z2 , H*{BG) = K[t\ where t is of 
degree two in the S1 case and of degree one in the Z2 case. If G = Zp for 
p odd, then H*(BG) = K[t, s~\/s2 — 0 where s has degree one and t degree 
two. We consider the cohomology spectral sequence of the fibre space 
X - • XG - • BG. 

LEMMA 1. (lr) Er is generated over K[f] by £j?'* and E1/* for G ^ Z2 

or S\ and by £?»* for G = Z2orSK 
(2r) If j ^ r — 1, cup product with t gives an isomorphism of EJ

r
,k into 

EJ
r
 + 2Ji for Gï Z2 and of EJ

r>
k into EJ

r
 + i>k for G = Z2 (r ^ 2). 

LEMMA 2. Suppose there is a fixed point. Then the fundamental class U 
of Hn(X) survives in E^n and if ueE0^* is nontorsion with respect to 
H*{BG\ there exists a veE0^* such that uv = U (cup product). 

Lemma 1 is proven by induction. 12 and 22 are true for G = S1 since 
E2 = H*(BG) ® H*(X\ and for G = Zp by known results of homological 
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algebra (see [3]). The induction step is then shown by straightforward 
degree arguments. 

Lemma 2 is proven by restriction to a iV-dimensional orientable sub-
manifold B c BG for large N. Then since Hn(X, Zp) = Zp and Zp has no 
nontrivial action on Zp, the local coefficients are trivial in the top dimen­
sion. Thus by piecing together over neighborhoods on which XG\B is 
trivial, it is easy to show that XG\B satisfies Poincaré duality with a 
cohomology fundamental class [&\U where XG\B is the portion of XG 

over B and [£] is the fundamental class of B. Using the fact that the 
inclusion XG\B -+ XG induces an isomorphism on ££k for j ^ N implies 
it induces an injection on Ej* for j ^ N, and choosing N large enough 
so it induces an isomorphism on E%*, the lemma follows by finding a 
class in H*(XG|B) dual to [B~\u. 

With these two lemmas the proof of Bredon is valid without change. 

2. Geometric proof. We shall assume that 
(i) X can be embedded in Euclidean space as a neighborhood retract. 

(ii) X has a finite number of orbit types. 
Property (i) is inherited by the fixed point set, as follows from (ii) and 

the equivariant embedding theorem. Because of (i) X is a Poincaré 
duality space over K of formal dimension n if and only if for any embedding 
X Œ Sn+r = S there is an isomorphism 

xh>xu( / : i f * ( I ) ->H*(S,S- X) 

for some U e Hr(S, S - X). 
Choose a G-equivariant embedding, and use K as the coefficient field. 

Then Hr(S, S - X) = Hr
G{S, S - X) and we consider U as an element of 

both groups, where we define for any G-pair (A, A'\ H%(A9A') 
= H*(AG, AG). By induction on the cells in BG, we see that there is an 
isomorphism 

u U\H%{X)-*H%{S,S-X). 

Let E be the fixed sphere in S and F = X n S the fixed set in X. Then 
the following diagram is commutative: 

flg(S,S-X)—ffJfrZ-F) 

uU ui*(U) 

HG(X) >HG(F) 

After localizing, the maps f* and hence all the maps in the diagram are 
isomorphisms. Localizing here means tensoring over K[Q a H*(BG) 
with X[t, t" 1 ] . The map on the right splits according to the connected 
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components of F, so we may assume F is connected. Then 

**([ƒ) = fu0 + f-% + . . . + ua + sv 

where ut e H*(E, S - F), u0 # 0, and s = 0 if G = Z2 or S1. Hence 

u W o :H*(F)^ f f* (E ,Z-F) 

is an isomorphism, so F is a Poincaré duality space over K. 
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