SINGULARITY SUBSCHEMES AND GENERIC PROJECTIONS

BY JOEL ROBERTS¹

Communicated by Michael Artin, April 3, 1972

Let k be an algebraically closed field, and let P^n be projective n-space over k. Let $V' \subset P^n$ be a smooth projective variety. It is known that V can be embedded in P^{2r+1} (cf. [2]), but there are smooth r-dimensional varieties which cannot be embedded in P^{2r} .

Let $r \leq m \leq \min(2r, n-1)$, and let $\pi: V \to \mathbb{P}^m$ be induced by projection from an (n-m-1)-subspace $L \subset P^m$ with $L \cap V = \emptyset$. As in [4], we ask what can be said about π when L is chosen generically, i.e. L is chosen from some dense open subset of the corresponding Grassmann variety. In the case that $m \ge r + 1$, the problem is to describe the local nature of the singular locus of $V' = \pi(V)$. This is of interest because V' can be chosen to be birational to V. Specifically, we would like to describe the structure of the local rings $\widehat{\mathcal{O}}_{V',y}$ for closed points $y \in V'$.

For i > 0, let $S_i \subset V$ consist of all points x at which the tangent map has rank $\leq r - i$. Thus

$$S_i = \{ x \in V \mid \dim_{k(x)} (\Omega^1_{X/P_{\cdots}}(x)) \ge i \}.$$

The following result is known; cf. [5, Lemma 3].

PROPOSITION. If L is chosen generically, then S_i is of pure codimension i(m-r+i) in V, for all i>0.

In particular, if m = r + 1, then $codim(S_1) = 2$, and $codim(S_2) = 6$. This says that $S_2 = \emptyset$ if $r \le 5$ and $m \ge r + 1$.

Let x be a closed point of $S_1 - S_2$, and let $y = \pi(x)$. Let $\pi^* : \mathcal{O}_{P^m, y} \to \mathcal{O}_{V, x}$ be the corresponding homomorphism of local rings. We can choose parameters t_1, \ldots, t_r (resp. u_1, \ldots, u_m) in $\mathcal{O}_{V,x}$ (resp. $\mathcal{O}_{P^m,y}$) such that $\pi^*(u_i) = t_i$ for i = 1, ..., r - 1, while $\pi^*(u_i) \in \mathbb{m}_x^2$ for i = r, ..., m, where $\mathfrak{m}_x \subset \mathcal{O}_{V,x}$ is the maximal ideal. In a natural way, one can define closed subschemes $S_1^{(q)} \subset V - S_2$ such that if char(k) = 0, the local generators of the sheaf of ideals defining $S_1^{(q)}$ are $(\partial^j u_i/\partial t_r^j)$ for $1 \le j \le q$, and $r \le i \le m$. In general, there are differential operators $D^{(j)}: \mathcal{O}_{V,x} \to \mathcal{O}_{V,x}$ such that $(D^{(j)}f)(x)$ is the coefficient of t_r^j in the power series expansion of f (cf. [1, §16]). The elements $D^{(j)}(\pi^*u_i)$ are the correct local generators.

AMS 1970 subject classifications. Primary 14B05, 14N05; Secondary 14M15. Key words and phrases. Projective algebraic variety, generic projection, differential operator, Grassmann variety, Schubert cycle.

Supported by NSF Grant GP-20550.

THEOREM 1. Every smooth projective variety V^r has an embedding such that if $\pi: V^r \to \mathbf{P}^m$ is induced by generic projection, then

- (i) $S_1^{(q)}$ is of pure codimension q(m-r+1) in V, for all q;
- (ii) if $\operatorname{char}(k) \not\mid (q+1)$ (resp. $\operatorname{char}(k) \mid (q+1)$), then $S_1^{(q)}$ is smooth over k (resp. fails to be smooth over k at only finitely many points).

The following result, which is essentially a statement about homomorphisms of formal power series rings, shows how to use Theorem 1 to obtain canonical forms for the homomorphisms $\pi^*: \hat{\mathcal{O}}_{P^m,y} \to \hat{\mathcal{O}}_{V,x}$, when $x \notin S_2$.

THEOREM 2. Let $\pi: V^r \to W^m$ be a morphism of smooth varieties over k, with $m \ge r$. Let $x \in V$ be a closed point, let $y = \pi(x)$, and assume that $x \in S_1^{(q)} - S_1^{(q+1)}$, and that $S_1^{(q)}$ is smooth at x. Then the local rings $\widehat{\mathcal{O}}_{V,x}$ and $\widehat{\mathcal{O}}_{W,y}$ can be identified with formal power series rings $k[[t_1,\ldots,t_r]]$ and $k[[u_1,\ldots,u_m]]$ so that

- (i) $\pi^*(u_i) = t_i$, for i = 1, ..., r 1;
- (ii) $\pi^*(u_r) = \sum_{j=1}^{\beta} t_{q(m-r)+j} t_r^j + t_r^{q+1}$, where $\beta = q-1$ (resp. q) if $\operatorname{char}(k) \not = (q+1)$ (resp. $\operatorname{char}(k) \mid (q+1)$);

(iii)
$$\pi^*(u_{r+i}) = \sum_{j=1}^q t_{q(i-1)+j} t_r^j$$
, for $i = 1, ..., m-r$.

REMARK. If $\operatorname{char}(k) | (q+1)$ and q(m-r+1) = r, then $S_1^{(q)}$ is finite and has no smooth points. If $\operatorname{char}(k) = 2$, pinch points of surfaces in \mathbb{P}^3 are an example of this; we have r = 2, m = 3, and q = 1 in this case.

The above results give information about the structure of $\widehat{\mathcal{O}}_{V',y}/\mathfrak{p}$, where \mathfrak{p} is a minimal prime ideal corresponding to a point $x \in \pi^{-1}(y)$ which satisfies the hypotheses of Theorem 2. The next theorem can be used to show how these minimal prime ideals relate to each other.

Let $2 \le a \le m+1$, and suppose that any a points of V span an (a-1)-subspace of P^n . Let $U_a \subset V \times \cdots \times V$ (a copies) consist of all a-tuples of distinct points. We can define a morphism $\phi: U_a \to G(n, a-1) = \operatorname{Grass}_a(k^{n+1})$, such that $\phi(x_1, \ldots, x_a)$ is the point which corresponds to the subspace Λ spanned by x_1, \ldots, x_a . For a fixed (n-m-1)-subspace $L \subset P^n$, let $\Sigma \subset G(n, a-1)$ be the special Schubert cycle $\Sigma = \{\Lambda \mid \dim(L \cap \Lambda) \ge a-2\}$. Thus $(x_1, \ldots, x_a) \in \phi^{-1}(\Sigma)$ iff $\pi(x_1) = \ldots = \pi(x_a)$.

THEOREM 3. Every smooth projective variety has an embedding such that if L is choosen generically, then $\phi^{-1}(\Sigma)$ is smooth and of codimension (a-1)m in U_a . Moreover, if $a \ge 2$, and if q_1, \ldots, q_a are ≥ 0 , then $\phi^{-1}(\Sigma) \cap (S_1^{(q_1)} \times \cdots \times S_1^{(q_d)})$ is smooth. (We set $S_1^{(0)} = V$.) If char(k) | (q+1)| and $S_1^{(q)}$ is not smooth at x, then $\pi^{-1}(\pi(x)) = \{x\}$, provided that $m \ge r + 1$.

The fact that $\operatorname{codim}(\phi^{-1}(\Sigma)) = (a-1)m$ was proved by E. Lluis [3]; the smoothness of $\phi^{-1}(\Sigma)$ is equivalent to Theorem 1 of [4]. The proof

of the last statement as well as the proofs of Theorems 1 and 2 will be published elsewhere.

We will now indicate how Theorem 3 is applied. Let $y \in P^m$, with $\{x_1,\ldots,x_a\} \subset \pi^{-1}(y)$; assume that $x_j \in S_1^{(q_j)}$ for $j=1,\ldots,a$. For each j, we choose elements u_{j1},\ldots,u_{jd_j} which form a subset of a regular system of parameters at y such that each $\pi^*(u_{jv})$ induces an element of the square of the maximal ideal along $S_1^{(q_j)}$ at x_j . [If $x_j \notin S_1^{(q_j+1)}$, and $\operatorname{char}(k) \not \vdash (q_j+1)$, we can take $d_j = q_j(m-r+1) + (m-r)$.] The smoothness implies that $\{u_{jv} \mid 1 \leq j \leq a, \text{ and } 1 \leq v \leq d_j\}$ is a subset of a regular system of parameters at y.

In particular, let us consider the case r=3, m=4, with $\operatorname{char}(k)\neq 2$. In this case, there are finitely many $y\in V'$ with $\pi^{-1}(y)=\{x_1,x_2\}$, where $x_1\notin S_1$, and $x_2\in S_1^{(1)}-S_1^{(2)}$. For such a point, the above considerations imply that

$$\mathcal{O}_{V',v} \cong k[[u_1, u_2, u_3, u_4]]/(u_1(u_2^2 - u_3^2u_4)).$$

REFERENCES

- 1. A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 32 (1967). MR 39 # 220.
- 2. E. Lluis Riera, Sur l'immersion des variétés algébriques, Ann. of Math. (2) 62 (1955), 120-127. MR 17, 87.
- 3. ——, On the singularities which appear in projecting algebraic varieties, Bol. Soc. Mat. Mexicana (2) 1 (1956), 1-9. MR 18, 335.
- 4. J. Roberts, Generic projections of algebraic varieties, Amer. J. Math. 93 (1971), 191-214. MR 43 # 3263.
- 5. _____, The variation of singular cycles in an algebraic family of morphisms, Trans. Amer. Math. Soc. 168 (1972),

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907

Current address: School of Mathematics, University of Minnesota, Minnesota, Minnesota 55455