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In a series of articles H. Kamowitz and I investigated the nature of <x(T), 
the spectrum of an arbitrary automorphism of an arbitrary semisimple 
commutative Banach algebra. This study wa& begun as a by-product of 
[1], in which we made the incidental observation that a(T) must meet 
{z:\z — 1| ^ 1}, unless T = I. The following is a summary of the known 
necessary conditions (N) and the known sufficient conditions (S) on a{T). 

Nl. If Tk = ƒ (some k ^ 1), then a(T) = a union of subgroups of the 
group of feth roots of 1, [2]. 

51. Every possibility consistent with Nl can occur (direct sums of 
rotations). 

N2. If Tk * I (all k ^ 1), then a(T) =2 the unit circle, [2]. 
52. It is common that a(T) = the unit circle, but <J(T) can be an 

annulus, [2]. 
N3. If Tk # ƒ (all k ^ 1), then a{T) must be connected, [3]. 
53. The set of <r(TYs is closed under the mapping 1/z, and if 

U = \Ja o(Ta) is bounded away from 0 and oo, then Ê7 is a(T) for some T. 
If R is a bounded region such that { l < | z | < a } ç R ç { l < |z|} and 
{1 < \z\} — R is a semigroup under multiplication, then R is a(T) for 
some T. The hypothesis that R be connected may be weakened somewhat, 
[3]. 

The purpose of this note is to extend the set of constructions of [3] 
to include cases where <x(T) is not the closure of its interior. The following 
theorem illustrates the technique of attaching a line segment to a region. 

THEOREM. Let a = {z:l ^ \z\ ̂  2} u {z:2 ^ z ^ 3}. Then there is a 
semisimple Banach algebra A and an automorphism T of A such that 
a{T) = a. 

PROOF. In the outline which follows I have omitted several routine 
calculations. Let A be the set of all functions which are bounded and 
analytic on {1 < \z\ < 2} and C00 on {1.5 ^ z ^ 3} and satisfy \f{n\z)\ 
^ B max(l, n!(log nf) for some B < oo, all n ^ 0, and 1.5 ^ z g 3. Define 
p(f) = sup{|f(z)\: 1 < \z\ < 2} + infB. It is clear that p is a norm for A 
and that A is complete with respect to p. 
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Define ƒ *g = £ - » aA*w, where ƒ = J ] a / and g = ^„z". When 
ƒ and g belong to A9 ƒ * g is analytic on 1 < |z| < 4 and 

/ ^ ( z ) = à f / ( w ) g ( £ > ) - for 1 < |z| < 2. 

It follows that ƒ * g € A and p( ƒ * g) ^ const p( ƒ ) • p(g). Then || ƒ || 
= const p{ f ) defines a Banach algebra norm on X. 

The mapping ƒ -• a„ is a homomorphism of 4 onto C for each n. If 
an = 0 for all n, then ƒ = 0: this is obvious for 1 < \z\ < 2; for 1.5 ^ z ^ 3 
it is a consequence of Carleman's theorem on quasi-analytic classes 
[4, Chapter 1], since the nth root of n!(log nf is asymptotic to (n/e) log «. 
Thus, A is semisimple. 

Because of the rapid growth of n !(log n)n, every function which is analytic 
on a neighborhood of a belongs to A. Furthermore, if g is such a function 
and ƒ is arbitrary in A, then gfe A and \\gf\\ S const || ƒ ||. 

Define T:A-> A by Tf(z) = zf(z\ T is an automorphism of A and 
a(T) ^ ex. If k 4 <r, use g = l/(z — A) in the preceding paragraph and we 
see that <r(T) = a. 

REMARK. The construction given above can be extended. As an illus
tration let us attach a new line segment to the old one. For example, let 
a' = a u {z: z = 3 + iy9 0 ^ y ^ 1}. Define A to be all functions which 
are bounded and analytic on {1 < \z\ < 2}, C00 on each interval 
{1.5 ^ z ^ 3} and {3 + iy:0 ^ y ^ 1} with |/(w)| ^ Bmax(l,n!(logn)w) 
on both intervals, and satisfying the Cauchy-Riemann condition (d/dx)nf 
= (i~x d/dyffat z = 3. The rest of the proof continues now with very slight 
changes. (Observe that the Cauchy-Riemann condition guarantees that 
any function analytic on a neighborhood of a' will belong to A and that 
any member of A which is 0 on a will be 0 on a') 

With the method of the theorem, disjoint domains can be connected 
by line segments, subject to the semigroup requirement of S3, and these 
constructions may be combined with those of [3] and iterated to produce 
quite complicated <r(T). 
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