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ABSTRACT. Let E be a set of positive measure on the unit circle. Let 
ƒ e Hp (1 f£ p ^ oo) and g be the restriction off to JE. It is shown that 
functions gx, A > 0, can be constructed from g so that gk -• ƒ. We also 
characterize those functions g on E which are restrictions of functions 
in Hp (1 < p £ oo). 

In the following, the space Hp (1 ^ p ^ oo) will, according to the con
text, be either the Hardy class of analytic functions in the open unit disc D 
or the space of the corresponding boundary value functions, viz the sub-
space of "analytic" functions in LP(C\ C being the unit circle. If E c C 
has positive measure then it is well known (see [3]) that a function in Hp 

cannot vanish on E without being identically zero. Thus, theoretically 
at least, ƒ e Hp is uniquely "determined" by its values on £. In the present 
work we address ourselves to the problem of recovering functions in Hp 

from their restrictions to E. Theorem I gives an explicit constructive solu
tion to this problem. The allied problem of characterizing the restrictions 
to E of functions in Hp (1 < p ^ oo) is solved in Theorem II. To the best 
of our knowledge, the only known results relating to these problems are 
due to the author [4] where the case p = 2 is dealt with. 

THEOREM! Let E c C with m(E) > 0. Suppose that 1 ^ p ^ oo, feHp 

and that g is the restriction of f to E. For each X > 0 define analytic func
tions hx,gx onD by 

hx(z) - e x p | - i-log(l + X) f Ç±ldei, zeD, 

gx{z) = khxiz)—\ * 'SK zeD. 
Ml JE W — z 

Then as k -• oo, gk -• ƒ uniformly on compact subsets of Z). Moreover for 
1 < p < oo we also have \\gx — ƒ ||p -» 0 as X -+ oo. 

THEOREM II. Let E c C with 0 < m(£) < m(C). For geLl(E) let gx be 
as in Theorem I. (a) If I < p < oo then a function g eLp(E) is the restriction 
to E of some f e Hp if and only if supA > 0\\gx\ \p < oo. (b) A function g e L°°(£) 
is the restriction to E of some f e H00 if and only ifsupp>1 lim sup^^^Hp 
< oo. 
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The proof of Theorem I will be based on a series of lemmas. First we 
recall some elementary properties of Toeplitz operators on Hp spaces (for 
details in the special case p = 2 see [1], and for the general case 1 < p < oo 
see [5]). Let 1 < p < oo. For each (p e L00, the Toeplitz operator T9 is 
defined by T9f = P((pf), feHp, where P is the natural projection of U 
onto Hp. We need the following facts: (i) ||7;|| ^ Cj^H», (ii) if <p, ij/eL00 

and if either q> e H°° or i// e ff00, then T^ = T^. This latter fact immedi
ately yields 

LEMMA 1. Ifh, l/heH™ and q> = \h\~2, then the Toeplitz operator % is 
invertible and TqT1 = ThT^ 

PROOF. T^T* = WkT^T^ = ThTl/h = J, etc. 
Let XE be the characteristic function of the set E and let for k > 0, 

(pk = l + A/f;. Then the function hx defined in Theorem I satisfies, 
l/<pA = hkhk. Also hx, \/hx e H00. Thus by Lemma 1, we have 

LEMMA 2. T̂ , w invertible and T^1 = Th 7J. 

LEMMA 3. Define for each aeD, ea(z) = 1/(1 - az\ zeD. Then ea e Hp, 
1 fg p ^ oo, and if 7^ is treated as an operator on Hp (1 < p < oo), we 
have T(p~

iea = hk{a)hx ea. 

PROOF. For each geHq {q = p/(p - 1)), we have (T^e^g) = ( e * , ^ ) 
= h(a)g(à) = h(a){ea,g). Thus T ^ = hx(a)ea. An appeal to Lemma 2 
finishes the proof. 

LEMMA 4. Let K be a compact subset of D and 1 ^ p ^ oo. 77ten as 
A ^ oo, | |M^)^«| |p •-> 0 uniformly for aeK. 

PROOF. We note that HfcJ^ ^ 1 and |fcA(a)| ^ (1 + A)"a where a > 0 
and a depends on \a\. 

Let now S be the Toeplitz operator on Hp (1 < p < oo) corresponding 
to the characteristic function xEoîE. Then since I + XS = 7^ ,(ƒ + XS)"1 

exists by Lemma 2. Also by Lemma 4, ||(J + A>S)~1ea\\p -*
A0 as A -» oo. 

By Lemma 2 and fact (i) about Toeplitz operators we also have 

\\(I + lS)->\\ = \\ThTh\\ï\\K\\lCÎ<zCl 

Noting that {ea:asD} is a fundamental set in H", we therefore obtain 
(cf., e.g., [3, p. 55]) that ||(/ + AS) - 1 / | |p -» 0 for every ƒ e H". Noting that 
for ƒ e H', (I + AS)- V = ƒ - A(7 + AS)- 'S/, we get 

LEMMA 5. ƒƒ 1 < p < OO andfeH", then as X -*• oo, 

|| W + AS)" ' S / - ƒ 11,-0. 
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The proof of Theorem I (for 1 < p < oo) will be complete if we show that 
gA = X(I + AS)" iSf. But this is routine: For z e D, 

(A(7 + XS)-lSf,e,) = W,(I + AS)"1*,) = A0te/,(/ + AS)"1^) 

= A(/,(7 + AST1*,)* = W A O O M J E -

In the above chain of equalities, the first is a consequence of the fact that 
(ƒ + AS)* is the operator (ƒ + XS) on Hq (q = p/(p - 1)) and the last 
results from Lemma 3. The notation ( , )E denotes the "inner product" 
over the set E. Now it can be readily checked that A( ƒ, hx(z)hÀez)E is the 
same as the defining expression for gx(z). 

The case p = oo is easy. HfeH™ then since ƒ is also in H2
9 by the pre

ceding, || gA — ƒ || 2 -* 0 and hence gA -+ ƒ uniformly on compact subsets 
ofZ). 

Turning to the case p = 1, let ƒ e H1. For 0 < r < 1, define fr byfr{e
w) 

= f(rew). Then as is well known, Wf^ £\\f\\x and ||/r - y ^ - 0 as 
r -> 1. Let us define, for each A > 0, frtX by 

/r>) = A ^ [ ^ ^ w , zei). 
Zm jE w — z 

Then we see that, for every compact set K c D, the following statements 
hold uniformly in X:(l) / M -» gA as r -» 1, (2) fr -> ƒ as r -> 1, (3) / M -» ƒ, 
as A -• oo. The less trivial of these statements, viz. (3), follows because 
fr € H2 and the casep = 2 of the theorem applies. If we show further that 
the convergence in (3) is also uniform for r in (0,1) then we can conclude 
that gA -• ƒ as A -• oo uniformly in K and the proof of the theorem for 
p = 1 will be complete. For this purpose, remembering that ƒ e H2 we 
have for each ze K, 

frJz) - fr(z) = (A(/ + M)-lSfr - fr,ez) = ((ƒ + XS)-%eM) 

= (ƒ„(ƒ + XSylez) = (f„hÀ(z)hxez). 

Hence we obtain 

\m-fr,M è lUiuitoVzIL s ii/iuiw^lL-
The last term is independent of r and Lemma 4 (p = oo) does the job. 

PROOF OF THEOREM II. The "only if" parts are evident from Theorem I. 
As for the "if" part in (a), the boundedness of {||gA||p} together with the 
weak* compactness of closed balls in Hp provide us with a sequence 
A„ -• oo such that gXn converges weak* to some ƒ in Hp. Let gx e LP(C) be 
defined by setting gx = g on E and gx = 0 otherwise. Denote Pgx by g. 
From the discussion following Lemma 5, it can be seen that 

gk = k{i + ksylg. 
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Thus for every keW (q « p/(p - 1)), (kn(l + W'Sfcfc) = (gA„,Sfc) 
-• ( ƒ S/c) = (S/, fc), while by Lemma 5, the first of these inner products 
converges to (g, k). Hence g = Sf. This means that the Fourier coefficients 
( (ƒ ~ gi)XE)(n) a r e z e r o f°r w ^ 0. In other words, ( / - g i ) ^ e H p . 
Since m(C\E) > 0, we must have ƒ = g{ on E. 

For proving the "if" part in (b) we need to make just two observations. 
First, g € L°°(£) implies gA e Hp for each p < oo and hence part (a) gives 
ƒ belonging to Hp for all p < oo and such that g is the restriction to E of 
ƒ. Secondly, | | g j , - || ƒ ||, as k -> oo and || ƒ ||, - , || ƒ ^ as p -> oo. The 
details are left to the reader. 

REMARKS. 1. In the proof of Theorem I, we did not use the F. & M. 
Riesz Theorem. We thus obtain a new proof of the statement: iffeHp 

(1 ^ p ^ oo), ƒ = 0 on E, m(E) > 0, then ƒ = 0. 
2. Theorem I points out a way which enables us to draw conclusions 

about the properties of a holomorphic function from the knowledge of its 
values on an arc. It is possible to obtain results parallel to the classical 
Cauchy theory where we now have integrals over a curve which may not be 
closed. Details of these and other related results will be published else
where. 
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