A NEW EXACT SEQUENCE FOR K_{2} AND SOME CONSEQUENCES FOR RINGS OF INTEGERS

BY R. KEITH DENNIS ${ }^{1}$ AND MICHAEL R. STEIN ${ }^{2}$

Communicated by Hyman Bass, November 29, 1971
Suppose R is a Dedekind domain with field of fractions F and at most countably many maximal ideals P. Using methods from the theory of algebraic groups, Bass and Tate [B-T] have proved the exactness of the sequence

$$
K_{2}(R) \rightarrow K_{2}(F) \xrightarrow{t} \coprod_{P} K_{1}(R / P) \rightarrow K_{1}(R) \rightarrow K_{1}(F) \rightarrow \cdots
$$

where t is induced by the tame symbols on R. They have also asked whether this sequence remains exact with " $0 \rightarrow$ " inserted on the left when R is a ring of algebraic integers. In this note we announce an affirmative response when R is a discrete valuation ring, and a proof that the resulting sequence is split exact under certain additional hypotheses on R. In addition, we derive consequences of these results for a ring, \mathfrak{D}, of integers in a number field. Among these are
(1) a complete determination of the groups $K_{2}(\mathfrak{D} / \mathfrak{a})$ for any ideal \mathfrak{a} of \mathfrak{D}; and
(2) examples of rings of integers \mathfrak{D} for which $K_{2}(\mathfrak{D})$ is not generated by symbols and $K_{2}(2, \mathfrak{D}) \rightarrow K_{2}(3, \mathfrak{D})$ is not surjective. Detailed proofs will appear elsewhere.

1. The exact sequence. Let A be a discrete valuation ring with field of fractions K and residue field k. Define the tame symbol [Mi, Lemma 11.4] $t: K_{2}(K) \rightarrow K_{1}(k) \approx k^{*}$ by $t\left(\left\{u \pi^{i}, v \pi^{j}\right\}\right)=(-1)^{i j} \bar{u}^{j} \bar{v}^{-i}, u, v \in A^{*}$, where π generates the maximal ideal of A.

Theorem 1. The sequence

$$
0 \rightarrow K_{2}(A) \rightarrow K_{2}(K) \xrightarrow{t} K_{1}(k) \rightarrow 0
$$

is exact. Moreover, if A is complete and k is perfect, this sequence is split exact.

The methods used in this proof are elementary in the sense that they

[^0]use no machinery from the theory of algebraic groups. Split exactness is proved by explicit construction of a splitting homomorphism $\rho: K_{2}(K) \rightarrow K_{2}(A)$, using several new identities satisfied by Steinberg symbols in $K_{2}(A)$. The proof that $K_{2}(A) \rightarrow K_{2}(K)$ is injective in the general case uses these new identities and the Reidemeister-Schreier method for obtaining presentations of subgroups [M-K-S, §2.3].
The proof of Theorem 1 depends, in the language of Chevalley groups, only on the presence of a root system of type A_{2}. Thus Theorem 1 holds for the groups $L(\Phi, A)$ defined in [St1, (3.10)] whenever Φ is nonsymplectic. In particular, Theorem 1 holds for the groups $K_{2}(n, A)=L\left(A_{n-1}, A\right)$, $n \geqq 3$, of [D]. By keeping track of which new identities are used in the proof of Theorem 1, we obtain
Theorem 2. If A is a discrete valuation ring and $n \geqq 3, K_{2}(n, A)$ has a presentation with generators $\{u, v\}, u, v \in A^{*}$, subject to the SteinbergMatsumoto relations [Ma, Lemme 5.6] and three additional relations, as follows:
(1) $\{u, v w\}=\{u, v\}\{u, w\}, w \in A^{*}$.
(2) $\{u, v\}=\{v, u\}^{-1}$.
(3) $\{u,-u\}=1$.
(4) $\{u, 1-u\}=1$, if $1-u \in A^{*}$.
\[

$$
\begin{align*}
\left\{u_{1}, 1+q u_{1}\right\} & \} \frac{u_{2}}{1+q u_{1}}, \frac{1+q\left(u_{1}+u_{2}\right)}{1+q u_{1}}\right\} \\
& =\left\{v_{1}, 1+q v_{1}\right\}\left\{\frac{v_{2}}{1+q v_{1}}, \frac{1+q\left(v_{1}+v_{2}\right)}{1+q v_{1}}\right\} \tag{5}
\end{align*}
$$
\]

for $q \in \operatorname{rad} A, u_{1}, u_{2}, v_{1}, v_{2} \in A^{*}$ such that $u_{1}+u_{2}=v_{1}+v_{2} \notin A^{*}$.

$$
\begin{equation*}
\{v, 1-p q v\}=\left\{-\frac{1-q v}{1-p}, \frac{1-p q v}{1-p}\right\}\left\{-\frac{1-p v}{1-q}, \frac{1-p q v}{1-q}\right\} \tag{6}
\end{equation*}
$$

for $p, q \in \operatorname{rad} A$.

$$
\begin{equation*}
\left\{-\frac{1-q r}{1-p}, \frac{1-p q r}{1-p}\right\}\left\{-\frac{1-p r}{1-q}, \frac{1-p q r}{1-q}\right\}\left\{-\frac{1-p q}{1-r}, \frac{1-p q r}{1-r}\right\}=1 \tag{7}
\end{equation*}
$$

for $p, q, r \in \operatorname{rad} A$.
Consequently $K_{2}(n, A) \approx K_{2}(n+1, A) \approx K_{2}(A)$.
Finally, suppose that \mathfrak{D} is the ring of integers in an algebraic number field F and that \mathfrak{p} is a maximal ideal of \mathfrak{D} with $\mathfrak{p} \cap \boldsymbol{Z}=p \boldsymbol{Z}$. Put $e=e(\mathfrak{p} / p)$, the ramification index. Denote by $\mathfrak{D}_{\mathfrak{p}}$ the completion of \mathfrak{D} at \mathfrak{p}, with field of fractions \hat{F}_{p}, let $\hat{\mu}$ denote the roots of unity in \hat{F}_{p}, and let $\hat{\mu}_{p}$ be the p-primary component of $\hat{\mu}$. Moore ([Mo], [Mi, Theorem A.14]) has shown that $K_{2}\left(\hat{F}_{\mathfrak{p}}\right) \approx G \oplus \hat{\mu}$, where G is a divisible group.

Corollary. $K_{\mathbf{2}}\left(\mathfrak{(}_{p}\right) \approx G \oplus \hat{\mu}_{p}$ where G is a divisible group.
2. Quotients of rings of integers. We continue to use the notation of $\S 1$.

Theorem 3. $K_{2}\left(\mathfrak{D} / p^{k}\right)$ is a cyclic p-group of order p^{t}, where

$$
t=\left[\frac{k}{e}-\frac{1}{(p-1)}\right]_{[0, m]}, \quad p^{m}=\left|\hat{\mu}_{p}\right|
$$

Here we write

$$
[x]_{[0, m]}=\inf (\sup (0,[x]), m)
$$

where $[x]$ denotes the greatest integer in x.
Since \mathfrak{D} is a Dedekind domain and K_{2} commutes with finite products, Theorem 3 allows us to compute $K_{2}(\mathfrak{D} / \mathfrak{a})$ for any ideal $\mathfrak{a} \subset \mathfrak{D}$. It should be noted that Theorem 3 implies the long conjectured result $K_{2}\left(Z / 2^{n} Z\right) \approx Z / 2 Z$ for $n \geqq 2$.

There are three parts to the proof of Theorem 3. It is easily shown that $K_{2}\left(\mathfrak{D} / \mathfrak{p}^{k}\right)$ is a finite p-group for $k \geqq 1$. Since $K_{2}\left(\mathfrak{D}_{\mathfrak{p}}\right) \rightarrow K_{2}\left(\mathfrak{D} / \mathfrak{p}^{k}\right)$ is surjective [St2, Theorem 2.13], the Corollary of $\S 1$ implies the existence of a surjection $\hat{\mu}_{p} \rightarrow K_{2}\left(\mathfrak{O} / \mathfrak{p}^{k}\right)$. Second, a topological argument using the norm residue symbol shows that for large values of k, there is a surjection $K_{2}\left(\mathcal{O} / p^{k}\right) \rightarrow \hat{\mu}_{p}$. In the final part of the argument we determine exactly how the order of $K_{2}\left(\mathcal{D} / \mathfrak{p}^{k}\right)$ can increase as k increases.
3. Rings of integers. The formula for the order of $K_{2}\left(\mathcal{O} / \mathfrak{p}^{k}\right)$ given in Theorem 3 closely resembles that given by Bass-Milnor-Serre for the order of $S K_{1}\left(\mathfrak{D}, \mathfrak{p}^{k}\right)$ when \mathfrak{D} is the ring of integers in a totally imaginary number field [B-M-S, Corollary 4.3c]. One difference, however, is that in our formula, p^{m} denotes the order of $\hat{\mu}_{p}$, the p-primary component of the roots of unity in \hat{F}_{p}, whereas in [B-M-S], p^{m} is the order of the p-primary component of the roots of unity in F itself. That these numbers are sometimes different may be exploited to yield several interesting examples.

Let $\mathfrak{D}=\boldsymbol{Z}[\sqrt{ }-17]$ and let $\mathfrak{p} \subset \mathfrak{D}$ be a prime such that $\mathfrak{p} \mid 2$. Then $\mathfrak{p}^{2}=(2)$ and $\mathfrak{p}^{6}=(8)$. Since $-17 \equiv-1$ modulo $16,\left|\hat{\mu}_{2}\right|=2^{2}[\mathrm{~W}$, Proposition 6-5-5], whereas $\mathfrak{D}^{*}=\{ \pm 1\}$. It thus follows from Theorem 3 and [B-M-S, Corollary 4.3c] that for $n \geqq 3$,

$$
K_{2}\left(n, \mathfrak{D} / \mathfrak{p}^{6}\right) \approx Z / 4 Z, \quad S K_{1}\left(\mathfrak{D}, \mathfrak{p}^{6}\right) \approx Z / 2 Z
$$

Using the exact sequence [Mi , Theorem 6.2]

$$
K_{2}(n, \mathfrak{D}) \rightarrow K_{2}\left(n, \mathfrak{D} / \mathfrak{p}^{6}\right) \rightarrow S K_{1}\left(\mathfrak{D}, \mathfrak{p}^{6}\right) \rightarrow 0
$$

we conclude that there is a nonzero element $\sigma \in K_{2}\left(n, \mathfrak{D} / \mathfrak{p}^{6}\right)$ which lies in the image of $K_{2}(n, \mathfrak{D})$. But the only possibly nonzero symbol in $K_{2}(n, \mathfrak{D})$ is $\{-1,-1\}$, and modulo \mathfrak{p}^{6} we have

$$
\{-1,-1\}=\left\{(\sqrt{ }-17)^{2},-1\right\}=1
$$

Therefore σ is the image of an element of $K_{2}(n, \mathfrak{D})$ which is not a symbol. We conclude: $K_{2}(n, \mathfrak{D})$ is not generated by symbols for any $n \geqq 3$.

It has been shown [D] that the statements " $K_{2}(n, A)$ is generated by symbols" and " A is universal for $G E_{n}$ " ([C, §2], [Si, §2]) are equivalent for commutative rings A. Thus $\mathcal{D}=\boldsymbol{Z}[\sqrt{ }-17]$ furnishes an example of a ring of integers which is not universal for $G E_{n}$ if $n \geqq 3$.

Now since \mathcal{D} is not Euclidean, it follows from results of Cohn [C, $\S 6$ and Theorem 5.2] that \mathfrak{D} is universal for $G E_{2}$ and, therefore, that $K_{2}(2, \mathfrak{D})$ is generated by symbols. Therefore $K_{2}(2, \mathfrak{D}) \rightarrow K_{2}(n, \mathfrak{D})$ is not surjective for $n \geqq 3$. This shows that the surjective stability theorem of [D] is the best possible result for a general ring of algebraic integers. It is, of course, possible to construct many similar examples by this procedure.

References

[B-M-S] H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geqq 3)$ and $S p^{2 n}(n \geqq 2)$, Inst. Hautes Etudes Sci. Publ. Math. No. 33 (1967), 59-137. MR 39 \# 5574.
[B-T] H. Bass and J. Tate, K_{2} of global fields (in preparation).
[C] P. M. Cohn, On the structure of the GL L_{2} of a ring, Inst. Hautes Etudes Sci. Publ. Math. No. 30 (1966), 5-53. MR 34 \# 7670.
[D] R. K. Dennis, Surjective stability for the functor K_{2} (to appear).
[M-K-S] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math. vol. 13, Interscience, New York, 1966. MR 34 \# 7617.
[Ma] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1-62. MR 39 \# 1566.
[Mi] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1971.
[Mo] C. Moore, Group extensions of p-adic and adelic linear groups, Inst. Hautes Etudes Sci. Publ. Math. No. 35 (1968), 5-70. MR 39 \# 5575.
[Si] J. Silvester, A presentation of $G L_{n}(Z)$ and $G L_{n}(k[X])$ (to appear).
[St 1] M. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004.
[St2] , Surjective stability in dimension 0 for K_{2} and related functors (to appear).
[W] E. Weiss, Algebraic number theory, McGraw-Hill, New York, 1963. MR 28 \# 3021.
Department of Mathematics, Cornell University, Ithaca, New York 14850
Department of Mathematics, Northwestern University, Evanston, Illinois 60201

[^0]: AMS 1970 subject classifications. Primary 18F25, 13D15, 20G25, 20G30; Secondary 12B25, 13J10.

 Key words and phrases. K_{2}, discrete valuation ring, universal for $G E_{n}$, stability theorems for K_{2}, algebraic integers, roots of unity, tame symbol, Steinberg symbol.
 ${ }^{1}$ Part of this research was done while the first author was a visiting member supported by the Institute for Advanced Study.

 2 Supported by NSF-GP-28915. The second author wishes to thank the Institute for Advanced Study for their hospitality during part of this research.

