A REPRESENTATION OF A POSITIVE LINEAR MAPPING

BY OHOE KIM1

Communicated by Dorothy Stone, January 4, 1972

Let X and Y be compact Hausdorff spaces. Let C(X) and C(Y) be the algebras of real valued continuous functions on X and Y respectively. C(X) and C(Y) are endowed with their natural partial ordering and their sup norm. Let $\Phi: C(X) \to C(Y)$ be a positive, bounded linear mapping.

X is said to have the Souslin property if every disjoint family of non-empty open subsets of X is countable.

A lattice L is said to satisfy the countable chain condition upward if the following is true: For any upper bounded subset A of L, there exists a countable subset B of A such that A and B have the same family of upper bounds. The countable chain condition downward on a lattice can be defined in a similar fashion.

A lattice L is said to satisfy the countable chain condition if L satisfies both the countable chain condition upward and the countable chain condition downward.

The purpose of this note is to announce the results on representation for Φ , based on the techniques developed in [1], [2].

To get the main theorem, we need the following series of propositions which are interesting in themselves.

PROPOSITION. For a given compact Hausdorff space X, there exists a complete Boolean space X^* and a mapping $\sigma: C(X) \to C(X^*)$ such that σ is an isometric, order preserving and algebra monomorphism.

REMARK. The construction of σ here is different from the one in [3]. A part of the proof comes from an application of the Gelfand-Naimark theorem [4].

We study a necessary and sufficient condition on X under which $C(X^*)$ satisfies the countable chain condition so that we later use this result to represent Φ as the Maharam integral [2].

To this end, we introduce the concept of the countable chain condition on a Boolean algebra [6] and the pseudocountable chain condition on C(X).

C(X) is said to satisfy the pseudocountable chain condition if every disjoint set of nonzero elements of C(X) is countable. (Two functions f and g of C(X) are disjoint if $\inf(f,g) = 0$.)

AMS 1970 subject classifications. Primary 46E15, 47B55, 28A40.

Keywords and phrases. Positive mapping, the Souslin property, representation, the Maharam integral.

¹ The work announced here is a part of the author's doctoral thesis at the University of Rochester under the supervision of Professor D. Maharam Stone, to whom he wishes to express his warm thanks.

PROPOSITION. X has the Souslin property if and only if $C(X^*)$ has the countable chain condition.

REMARK. The proof goes roughly as follows: First we show that the countable chain condition on $C(X^*)$, the pseudocountable chain condition on $C(X^*)$ and the Souslin property on X^* are all equivalent. Next, we show that X^* has the Souslin property if and only if X has the Souslin property.

We are concerned with an extension of Φ . Let K(X) and K(Y) be the spaces of Baire functions on X and Yrespectively. In [5], it was shown that K(X) and K(Y) contain C(X) and C(Y) respectively.

PROPOSITION. There is a unique extension $\Phi_1: K(X) \to K(Y)$ of Φ with $\|\Phi_1\| = \|\Phi\|$. Furthermore, Φ_1 is a positive, linear and countably additive mapping.

Finally, we have the following theorem.

THEOREM. Let X and Y have the Souslin property. Then Φ can be expressed as the Maharam integral.

REMARK 1. For the definition of the Maharam integral, we refer to [2]. Roughly, we may rephrase the theorem as follows. Under the above assumptions on X and Y, there exist compact Hausdorff spaces R and S such that $C(X^*)$ is "isomorphic" to a certain space of functions on $R \times S$ and $C(Y^*)$ is isomorphic to a space of functions on R, and under these isomorphisms, Φ corresponds to the mapping $f \mapsto f'$ where f'(r)= $\int_{s} f(r, s) d\mu$, the integral being formed with respect to an ordinary σ -finite numerical measure u on S.

REMARK 2. The proof relies on the preceding propositions and the techniques e.g., a direct product $J \otimes U$ in Maharam's sense, developed in [1], [2] to get a generalized form of the Maharam integral. To complete the proof, it is necessary to realize a certain set mapping as a point mapping.

Detailed proofs and applications of these results will appear elsewhere.

REFERENCES

- 1. D. Maharam, The representation of abstract measure functions, Trans. Amer. Math. Soc. 65 (1949), 279-330. MR 10, 519.

 2. _____, The representation of abstract integrals, Trans. Amer. Math. Soc. 75 (1953),
- 154-184. MR 14 # 1071.
- 3. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489. MR 22 #12509.
- 4. I. M. Gel'fand and M. A. Naimark, On the embedding of normed rings into the ring of
- operators in Hilbert space, Mat. Sb. 12 (54) (1943), 197-213. MR 5, 147.

 5. P. R. Halmos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 11, 504.
 6. ——, Lectures on Boolean algebras, Van Nostrand Math. Studies, no. 1, Van Nostrand, Princeton, N.J., 1963. MR 29 #4713.

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENN-SYLVANIA 15213.