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1. Introduction. We owe to G.-C. Rota [On the foundations of combina­
torial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie 
und Verw. Gebiete, Band 2, (1964), 340-368] the idea of obtaining explicit 
formulas for the chromatic polynomials of graphs or maps by use of a 
so-called Möbius inversion formula. His formulas give the development of 
these polynomials in powers of A, where X is the number of colors. His work 
provides interesting commentary on previous work of G. D. Birkhoflf 
[A determinant formula for the number of ways of coloring a map, Ann. of 
Math., (2) 14 (1912), 42-46] and H. Whitney [A logical expansion in mathe­
matics, Bull. Amer. Math. Soc. 38 (1932), 572-579] who had discovered 
similar formulas by methods which, at least superficially, seemed quite 
different. 

Now, in the case of regular planar maps, the developments in powers of 
(X - 2) or (X - 3) appear to have great advantages over the developments 
in powers of X. General formulas for developments in powers of (X - 3) 
have so far eluded us. But general formulas for the coefficients, au a2,..., 
in expansions for chromatic polynomials in the form 

* = i 

are well known. They are given in a paper by G. D. Birkhoflf and D. C. 
Lewis [Chromatic polynomials, Trans. Amer. Math. Soc, 60 (1946), 
355-451], hereafter referred to as BL. The question arose whether these 
formulas could be obtained by use of a Möbius function for a suitably 
chosen partially ordered set. It seems impossible to do so by just using 
the Möbius function in the form given by Rota. 

The purpose of this paper is to present an extremely simple generaliza­
tion of the Rota-Möbius inversion formula which suffices to prove the 
so-called determinant formula for the chromatic polynomial for a regular 
planar map as given in BL, pp. 401-405, in powers of (X - 2). In §4, we 
actually give the new proof of the determinant formula, omitting the details 
about the so-called markings of the maps, which are supplied by appro­
priate passages in BL. 

2. The principal theorem. Let S be a locally finite partially ordered set 
with elements x,y, z,... .Let Sx be a finite subset of S, defined for each 
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x 6 5, such that xeSx and such that (y e Sx) z> y <* x. Let <̂ (x, y) = 1 if 
x e Sj, and £(x, y) = 0 if x is not an element of S r In particular £(x, x) = 1 
for all xeS. Hence, by a known theorem (cf. Marshall Hall, Jr., Combina-
torial theory, p. 15, Lemma 2.2.1), the function £ has an inverse ij/ in the 
so-called incidence algebra of the partially ordered set S. This means that 
there exists a function i//(x9 y) which is 0 for all pairs (x,y) such that 
x | y and is such that 
(1) Z £<x' Z M Z ' y) = %x9 y) 

x^z^y 

where <$(x, x) = 1 for all x and <5(x, y) = 0 if x # y. Since £(x, z) = 0 except 
when x e Sz, we may write (1) in the form 

(2) X «x,zMz,y) = *(x,y). 

Designating the fixed elements by z and x (instead of by x and y) and 
using y for the index of summation, we may write the formula (2) as follows : 

(3) I £(z,^(>>,x) = <5(z,x). 
z€Sy;y g x 

THEOREM 1. If g and f are any two functions defined on S such that 
g(x) = ZyeSxfW* then/(x) = X ^ g O O ^ x ) . 

PROOF. Consider S(x) = Zy^*£0#0>> *)• Then, using the formula 
giving g in terms off and the fact that £(z, y) = 1 if z e Sy, we have 

s(x) = Z [ Z / « W * ) - 1 1 ƒ(*)«*.y)*Ky,x) 
y^x[_zeSy J (y,z) 

where the double summation sign refers to a summation over all pairs 
(y, z) such that y g x and zeSy. This sum may be displayed as an iterated 
sum as follows: 

S(x)= Zf(z{ £ £(z, >#(>>, x ) } 
zgx LzeSyjy^x J 

Hence from (3) we see that 

zgx 

The converse of this theorem is also true, and the proof (which we omit) 
is similarly extremely simple. Instead of being based on the formula (1) 
which expressed the fact that ij/ is a right inverse of £, it is based on the 
analogous formula expressing the fact that ij/ is a left inverse of £. 

The Rota-Möbius inversion theorem is the special case which arises 
when Sx = {y\y ^ x}, at least, assuming that S is such that Sx is finite for 
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all x. In this case the function Ç is usually written £ and \jj is written JX. 
These are the famous zeta and Möbius functions. 

3. Determination of the generalized Möbius function in a special case. 
Suppose now that S is such that for each element x of S there is not more 
than one element y of S such that x < y with no element between x and y. 
This means, more generally, that if x < y9 there exists a unique maximal 
set of elements zl9 z2,.. . .9zk_x (which may be vacuous if k = 1) such that 
x < zx < z2 < .. . < zk_ ! < y. In such a case, x is said to be k steps below 
y. If x = y9 x is said to be zero steps below y. We define Sy to consist of y 
itself together with the set of all elements x which are one step below y. 

THEOREM 2. If x is k steps below y9 then ij/(x9 y) = ( - If. 

PROOF. Using the fact that £(x, z) = 1 if x e S29 we write (2) in the form 

(4) I iKz,y) = S(x9y). 
xeSz;z^y 

If x = y9ô(x9y) = 1 and the only z, such that z ^ y and such that xeS z , 
is clearly z = y. It follows from (4) that ^(x, y) = 1 if x is zero steps below 
j / . Thus the theorem is established if k = 0. This result is, of course, true 
in the general case and not just in the special case under present consider­
ation, if we express it as i//(x9 x) = 1. 

Next, if x is just one step below y there are only two values of z satisfying 
the two conditions z ^ y and x e Sz9 namely z = x and z = y. Thus the 
formula (4) reduces to ij/(x9 y) + if/(y9 y) = S(x9y) = 0; and, since it has 
already been proved that i//(y,y)= +1, we have i/̂ (x, y) = —1. This 
establishes the theorem for k = 1. 

We now make the inductive hypothesis that the theorem is true when 
k = j — 1 and prove that it is true for k = j (j = 2, 3,...). Thus, if x is 
j steps below y9 there exist unique elements ul9u2,..., uj.l such that 
x < ul < u2 < . . . < if,-1 < y. Evidently x e SMl, but x is not an element 
of Su. for i = 2, . . . 9j — 1 ; nor is x an element of S r These facts follow from 
the definition of the S's. Thus there are only two values of z satisfying the 
two conditions z ^ y and x e Sz9 namely z = xandz = ul9 and the formula 
(4) reduces to ^(x, y) + \l/(ul9 y) = <5(x, y) = 0. But ut is j — 1 steps below 
y. Hence by our inductive hypothesis il/(ul9y) = (—l)*"1. Hence i/<x, y) 
= (— ly' and the induction is complete. 

4. Application to the theory of chromatic polynomials. We apply the 
preceding results to obtain (without actual use of determinants) the so-
called "determinant formula" for a chromatic polynomial in powers of 
X — 2 (cf., BL, pp. 401-seq.). The set S is a set of maps marked as described 
in BL. The map x is one step below the map y9 if x is a submap of y ob­
tained by the erasure of an arbitrary set of marked boundaries of y. We 
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confine attention to the case where all the maps of S are obtained from a 
single map in a (finite) number of such steps. The maps are identified and 
marked as obtained, and we do not assume necessarily that two distinct 
maps x and y (x # y) are necessarily geometrically distinct. The set S 
is always finite, so that it will contain minimal elements. These are the maps 
for which the set of marked boundaries must or may be taken as vacuous. 

We let PX(X) denote the chromatic polynomial of the marked map x. 
This is the number of ways the map may be colored in X colors in the usual 
sense. But the number of ways the map may be colored in X colors without 
regard to color clashes at the marked boundaries is X(X — \)(X — 2)Wx"2, 
where nx is the number of regions in the marked map x. This follows from 
the way the boundaries are marked. We evidently have 

X(X- m-2)n*~2= £P,(A) 
yesx 

where Sx is the set of all maps obtained from x in just one step plus the 
map x itself. So taking f(x) = PX(X) and g(x) = X(X - \)(X - 2)"*~2, we 
find from Theorem 1 that 

px(X)= Y^xix-m-ip-i^x). 
y âx 

But by Theorem 2, ^(y, x) = ( - 1 ) \ where k = fc(x, y) is the number of 
steps by which y is below x. Thus 

px(X) = x(x - i)|" Ç (-\f^y\x - ify-A 

= MX - i{£( i (^ i)kixA(x - iy~2\ 
U=2\ny = j;y^x / J 

Let [p -j]x denote the number of elements y satisfying the following con­
ditions: y ^ x, ny = j , and fe(x, y) = p. Then 

Z (-if(x'y) = Y(-mp-j]x. 
ny = j;y£x p 

Substituting in the preceding formula for PX(X) we obtain 

(5) PX(X) = X(X - l)W (~ \f[p 'MA - 2Y'2\ 

where [p -j]x evidently denotes the number of maps in the set S having just 
j regions that are obtained from the map x in just p steps. The formula 
(5) is essentially the formula (7.2) of BL, p. 403. The presence of the sub­
script x is connected with the fact that (5) holds for any map of the set S 
and not just for the map corresponding to the maximal element in S. 
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