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In the development of the representation theory for linear transforma­
tions on function spaces by integrals, historically three different stages can 
be distinguished : in stage (I) one considers scalar valued transformations 
(functionals) on scalar valued functions, in stage (II) the transformations 
(stage (IIA)) or the functions (stage (IIB)) assume values in a topological 
vector space, and in stage (III) one studies the case of (vector valued) 
transformations on a space of vector valued functions. If we restrict our­
selves to Banach spaces, as for the space of continuous functions on a com­
pact Hausdorff space, stage (I) is marked by the theorems of F. Riesz [19] 
and S. Kakutani [14], (IIA) by the results of R. G. Bartle, N. Dunford and 
J. Schwartz [1], (IIB) by the investigations of S. Bochner and A. E. Taylor [6] 
and I. Singer [20], (III) by the results of [5], of N. Dinculeanu [8], and 
C. Foiaç and I. Singer [10]. In a similar way, the history of representation 
theory for linear maps on //-spaces could be retraced. Recently however, 
most interesting features have been added to the theory by the introduction 
and consideration of a wide class of nonlinear transformations, for example 
those T, for which T(fx + f2) = Tfx + Tf2 for all pairs of functions fuf2 

for which the intersection of the sets {t :ft(t) ̂  0}, i = 1,2, is empty or has 
measure zero. The theory of these "additive" transformations on the 
//-spaces was begun with results of L. Drewnowski and W. Orlicz [9] and 
V. Mizel and K. Sundaresan [15], [16], [17] (stage (I)) and rather quickly 
reached the stages (II) and (III) by a subsequent paper of V. Mizel and 
K. Sundaresan [18]. As for the nonlinear transformations on spaces of 
continuous functions it seems evident that the additivity alone is not suf­
ficient to build up a satisfactory representation theory. Stage (I) of their 
theory began with the research of R. V. Chacon and N. A. Friedman [7] 
and of N. A. Friedman and M. Katz [11], [12] and with their introduction 
of a generalized additivity property (called "strong additivity" below). 
Since these papers appeared the writer of this note worked out the theory 
in its stage (III) following the line of his earlier work in linear theory and 
presented his results at a conference on vector measures at the University 
of Utah in April 1971 not being aware of the fact that the theory had 
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already entered its stage (II A) by results of N. A. Friedman and A. E. Tong 
[13] which came to his knowledge after their publication in May 1971. The 
purpose of this note is to announce the following further results, the proofs 
of which will be published elsewhere. 

1. The integral. Let E and F be Banach spaces and let Ea:= {x e £, ||x|| 
^ a}, a > 0. Consider the linear space M(£, F) of all mappings U:E -> F 
with the following properties : 

(i) U0 = 0, 
(ii) ||C/J| := supX6^ \\Ux\\ < oo (t/a is the restriction of U on £a), 
(iii) DsU:= s u p ^ ^ n ^ ^ n ^ \\Ux - Ux'\\ (defined for a,<5 > 0) tends 

to zero for ô -» 0 (and fixed a > 0). 
(Property (i) is not essential and introduced for convenience.) We con­

sider the linear space Ma(E, F) == {Ua : U e M(E9 F)} normed by || • || : Ua 

Now let 91 be a ring of subsets of an abstract set S and let S e 3t. We 
define an integral for certain additive functions l)\0l-+ M(£, F). For g in 
the space SE(9l) of all E- valued, ̂ -simple functions we may and shall define 

jg(t)dU(t) = ZV(Bj)xj9 

where g = YJXJ%*J is a representation of g by a finite linear combination 
of functions XJXBJ* with Xj€E,Bj€ât and {Bu...,Br} being a disjoint 
partition of S (such partitions will be denoted by n in the sequel). Assume 
now that U is "of bounded semivariation" on S. By this we mean that 

sva(U, S): = sup 
it 

ÏU(BJ)XJ 
j 

< 00 

and 

sv$(U9S):= sup 
Xj'XjeEviWxj-x'jWZÔ 

Z(U(BJ)XJ - U(Bj)x$ 
j 

0 (<5-*0). 

Then we may and shall define for all g in the space ME{(%) of all £-valued, 
^-totally measurable functions 

fg ( t )« / (0 - l im \gn(t)dU(t\ 

where {gn} is a sequence in eE{0t) tending to g uniformly on S. For all g, gu 

g2eJtE(ât) with {t:gt(t) ± 0} n {t:g2(0 ^ 0} = 0 we then have 

jig + Si + *a)<W = ƒ(* + « i ) « / + ƒ(* + gaMU - jgdU. 
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2. The representation theorem. We consider a compact Hausdorff space 
S and denote by CE(S) the space of all continuous functions defined on S 
with values in £, endowed with the uniform norm. 0& is the d-ring of the 
Borel sets in S. 

THEOREM 1. For any Te M{CE{S), F\ which is "strongly additive," that is 
for which 

T(f + A+ f2) = T(f + A) + T(f + f2) - Tf 

for all f fi, f2 G CE(S) with supp fY n supp f2 = 0 , there exists a unique 
finitely additive function U \3ft -• M(£, F") of bounded semivariation on S, 
such that [ly^'.Sd -• Ma(£, C) is regular for all y' e F' and a > 0, one has 

ir=jfdU9 feCE(S), 

and \\TJ\ = sva(U,S), D*ÔT = sv*ô(U, S\ a,<5>0. The measures fif:@ 
-* M(£, Q are defined by iiy{B)x = < U(B)x, / > /or allBeâS,xe E. 

The proof is based on a representation theorem for strongly additive 
functionals. The representation of these functional obtained in [12] for 
the special case E = R can easily be derived from this result using the 
existence of a lifting for the measure 

where \i is the representing measure and v(fxn) the variation of ixn:$ 
-• M„(E, C), and the Radon-Nikodym theorem. This argument furnishes 
at the same time a kernel representation for functionals in case E is an 
arbitrary Banach space. 

3. Consequences of the representation theorem. The assumptions of 
Theorem 1 will be made throughout. 

THEOREM 2. If no subspace of F is isomorphic to c0 or if T is weakly com­
pact then the measures v(fiy>a) are a-additive uniformly for \\y'\\ ^ 1 and 
each a > 0. 

This last property has been extensively studied in [4] for linear operators 
T. In particular, it implies that U:ó# -• M(£, F) and that the functions 
Ua:âg^ Ma(E9F) are <x-additive in the norm of Ma{E,F). Under the 
assumptions of Theorem 2 it follows in the case E = C that T takes weak 
Cauchy sequences in strong Cauchy sequences. 

4. Special results related to the weak compactness of ?. In the linear case 
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it is known that if no subspace of F is isomorphic to c0 and if one of the 
following conditions holds : 

(i) E is reflexive, 
(ii) E" is separable and all V(B\ B e ^ are weakly compact, 

then T is weakly compact (see [3]). We have the following unifying result 
valid even for strongly additive Te M(CE(S\ F). 

THEOREM 3. If the measures v(jnyta) are o-additive uniformly for \\y'\\ ^ 1 
and each a > 0, if there exists a linear space Efi c M(£, C) such that 
liy-.âS -+ Ep, y' e F' and the closures E% of E{ in Ma(£, Q together with the 
duals Ef ' possess the Radon-Nikodym property, a > 0, and if all U(B), Be$9 

are weakly compact, then T is weakly compact. 

The crucial point in the proof is the use of an extension of the Gantmacher 
theorem to nonlinear mappings as established in [2]. Let us also remark 
that there exist counterexamples for the conclusion being false in cases 
that for Efi = span{/v(B), B e â9, y' e F} either the E{ or the JEJ' fail to 
have the Radon-Nikodym property (with the other conditions being 
satisfied). 

Using a criterion for the weak compactness of subsets of spaces of 
regular tr-additive measures with values in the space of continuous func­
tions over the unit disk in the complex plane we are able to prove, for 
E = C, 

THEOREM 4. If no subspace of F is isomorphic to c0 then every strongly 
additive transformation Te M(C(S), F) is weakly compact. 
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