A RADIAL AVERAGING TRANSFORMATION, CAPACITY AND CONFORMAL RADIUS

BY MOSHE MARCUS

Communicated by F. W. Gehring, October 18, 1971

Introduction. Let $\mathscr{D} = \{D_1, \ldots, D_n\}$ be a family of domains in the plane, containing the origin. We define a radial averaging transformation \mathscr{R}_A on \mathscr{D} by which we obtain a starlike domain D^* . When \mathscr{D} is such that the domains D_1, \ldots, D_n are obtained from a fixed domain D by rotation or reflexion, \mathscr{R}_A becomes a radial symmetrization. One of the results we present is an inequality relating the conformal radius of D^* to the conformal radii of D_1, \ldots, D_n at the origin. This result includes, as particular cases, the radial symmetrization results of Szegö [6] (for starlike domains), Marcus [4] (for general domains) and Aharonov and Kirwan [1]. The inequality for the conformal radii is obtained via an inequality for, conformal capacities. A number of applications in the theory of functions is described.

1. Let M be the half strip $\{(x, y)|0 < x < 1, 0 < y\}$. We shall say that a function f is of class $\overline{B}(M)$ if

(i) f is continuous in \overline{M} (= closure of M);

(ii) $0 \leq f \leq 1$ in M;

(iii) the set $\Omega_1 = \{(x, y) | f(x, y) < 1\} \cap M$ is bounded;

(iv) on any half line $\{x = x_0\} \cap \overline{M}$, f assumes every value λ , $0 < \lambda < 1$, at least once, but not more than a finite number of times;

(v) $f \in C^1(\overline{\Omega}(f))$, where $\Omega(f) = \{(x, y) | 0 < f(x, y) < 1\} \cap M;$

(vi) for any line $x = x_0$, $0 \le x_0 \le 1$, the set of points on $\{x = x_0\} \cap \overline{\Omega}(f)$ where $\partial f / \partial y = 0$ is finite.

If $f \in \overline{B}(M)$ we denote

(1.1)
$$\Omega_{\lambda}(f) = \{(x, y) | f(x, y) < \lambda\} \cap M \quad (0 < \lambda \le 1), \\ \Omega_{0}(f) = \{(x, y) | f(x, y) = 0\} \cap M.$$

(1.2)
$$l(x_0, \lambda; f) = \max(\{x = x_0\} \cap \Omega_{\lambda}(f)) \quad (0 \le \lambda \le 1),$$

where the measure is the linear Lebesgue measure. We note that $l(x_0, \lambda; f)$ is a strictly monotonic increasing function of λ , $0 \leq \lambda \leq 1$.

We now introduce

DEFINITION 1.1. Let $\mathscr{F} = \{f_1, \ldots, f_n\} \subset \overline{B}(M)$ and let $A = \{a_1, \ldots, a_n\}$ be a set of positive numbers such that $\sum_{j=1}^n a_j = 1$. Denote

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 30A44, 30A36; Secondary 31A15, 30A32. Key words and phrases. Conformal capacity, Dirichlet integral, conformal radius, radial symmetrization, complex analytic functions in the unit disk.

(1.3)
$$l^*(x,\lambda) = \sum_{j=1}^n a_j l(x,\lambda;f_j)$$

$$\Omega_{\lambda}^{*} = \Omega_{\lambda}^{*}(\mathscr{F}, A) = \{(x, y) | 0 < y < l^{*}(x, \lambda)\} \cap M \qquad (0 < \lambda \leq 1),$$

(1.4) $\Omega_0^* = \Omega_0^*(\mathscr{F}, A) = \{(x, y) | 0 \leq y \leq l^*(x, 0)\} \cap M,$

$$\Omega^* = \Omega^*(\mathscr{F}, A) = \Omega_1^* - \Omega_0^*$$

Then the linear averaging transformation \mathscr{L}_A on \mathscr{F} is defined as follows:

(1.5)
$$f^*(x, y) = \mathscr{L}_{\mathcal{A}}(\mathscr{F}) = 0, \quad \text{if } (x, y) \in \Omega_0^*,$$
$$= \lambda, \quad \text{if } y = l^*(x, \lambda), 0 < \lambda < 1,$$
$$= 1, \quad \text{if } (x, y) \in M - \Omega_1^*.$$

The following two results are the main steps in the derivation of the main theorems.

LEMMA 1.1. Let \mathcal{F} and A be as in Definition 1.1. Then f^* is uniformly Lipschitz in M.

THEOREM 1.1. Let \mathscr{F} and A be as in Definition 1.1. Let G(t) be a function defined for $t \ge 0$ such that G(t) is continuous, convex and nondecreasing. Then, with the notations introduced above, we have

(1.6)
$$\iint_{\Omega^*} G((1+|\nabla f^*|^2)^{1/2}) \, dx \, dy \leq \sum_{j=1}^n a_j \iint_{\Omega(f_j)} G((1+|\nabla f_j|^2)^{1/2}) \, dx \, dy,$$

where $\Omega(f_j) = \Omega_1(f_j) - \Omega_0(f_j)$.

COROLLARY.

(1.7)
$$\iint_{\Omega^*} |\nabla f^*|^p \, dx \, dy \leq \sum_{j=1}^n a_j \iint_{\Omega(f_j)} |\nabla f_j|^p \, dx \, dy \qquad (1 \leq p).$$

Note that the left side of (1.6) is meaningful because of Lemma 1.1.

2. A condenser in the plane is a system $C = (\Omega, E_0, E_1)$ where Ω is a domain and E_0, E_1 are disjoint closed sets whose union is the complement of Ω . We shall assume also that E_0 is compact and E_1 unbounded. An alternative notation for C will be $C = (D, E_0)$ where $D = \Omega \cup E_0$.

If Ω satisfies the segment property (i.e., for any point *P* on the boundary of Ω there exists a segment $\overline{PP'}$ lying outside Ω), there exists a unique function ω , called the *potential function* of *C*, such that ω is harmonic in Ω and continuous in the extended plane and such that $\omega \equiv 0$ on E_0 and $\omega \equiv 1$ on E_1 . In this case the *conformal capacity* of *C* may be defined by MOSHE MARCUS

(2.1)
$$I(C) = \operatorname{Dir}_{\Omega}[\omega] \equiv \iint_{\Omega} |\nabla \omega|^2 \, dx \, dy$$

We now introduce

DEFINITION 2.1. Let $\mathcal{D} = \{D_1, \ldots, D_n\}$ be a family of open sets in the complex plane z. Suppose that the closed disk $|z - z_0| \leq \rho$ (for some $\rho > 0$) is contained in $\bigcap_{j=1}^n D_j$. Let

(2.2)
$$K_j^{\rho}(\phi) = \{r | z = z_0 + r e^{i\phi} \in D_j, \rho < r < \infty\}$$
 $(0 \le \phi < 2\pi);$

(2.3)
$$l_j^{\rho}(\phi) = \int_{K_j^{\rho}(\phi)} \frac{dr}{r}$$
 and $R_j(\phi) \equiv R(\phi; D_j; z_0) = \rho \exp l_j^{\rho}(\phi).$

(Note that $R_i(\phi)$ does not depend on ρ .)

Let $A = \{a_1, \dots, a_n\}$ be a set of positive numbers such that $\sum_{j=1}^n a_j = 1$. Set

(2.4)
$$R^*(\phi) = \prod_{j=1}^n R_j(\phi)^{a_j};$$

(2.5)
$$D^* = \mathscr{R}_A(\mathscr{D}; z_0) = \{ z = z_0 + re^{i\phi} | 0 \le r < R^*(\phi), 0 \le \phi < 2\pi \}.$$

We shall say that \mathscr{R}_A is a radial averaging transformation on \mathscr{D} with center z_0 .

If $\{C_j\}_{j=1}^n$ is a family of condensers, $C_j = (\Omega_j, E_{0,j}, E_{1,j}) = (D_j, E_{0,j})$ where $\bigcap_{i=1}^n E_{0,j} \supseteq \{|z - z_0| \ge \rho\}$ we define

(2.6)
$$C^* = \mathscr{R}_A(\{C_j\}; z_0) = (D^*, E_0^*)$$

where $D^* = \mathscr{R}_A(\{D_j\}; z_0)$ and $E_0^* = \mathscr{R}_A(\{E_{0,j}\}; z_0)$. (E_0^* is defined in the same way as D^* except that in (2.5) we have $0 \le r \le R^*(\phi)$.)

We can now formulate the main result.

THEOREM 2.1. Let $\{C_1, \ldots, C_n\}$ be a family of condensers as above, and let C^* be defined as in (2.6). Suppose that the domains $\Omega_1, \ldots, \Omega_n$ have the segment property. Then

$$(2.7) I(C^*) \leq \sum_{1}^{n} a_j I(C_j).$$

The proof is based on Theorem 1.1. We may assume that $z_0 = 0$ and $\rho = 1$. We map the domain |z| < 1, cut along the positive real axis, by $w = \ln z$ onto the half strip $0 < u < \infty$, $0 < v < 2\pi$ (w = u + iv). Let ω_j be the potential function of C_j . Denote by $f_j(u, v)$ the function ω_j represented in (u, v) coordinates. Then we apply Theorem 1.1 (or, more precisely, inequality (1.7) with p = 2) to $\mathscr{F} = \{f_1, \ldots, f_n\}$ in the strip mentioned above.

[May

458

If D is a domain in the plane and $z_0 \in D$, denote by $r(z_0, D)$ the conformal (or inner) radius of D at z_0 . (For definition and properties see for instance Hayman [3, pp. 78–83].) Using a theorem of Pólya and Szegö [5] on the relation between conformal radius and conformal capacity and Theorem 2.1 we obtain

THEOREM 2.2. Let $\mathcal{D} = \{D_1, \ldots, D_n\}$ be a family of domains such that $z_0 \in \bigcap_{i=1}^{n} D_i$. Let $D^* = \mathcal{R}_A(\mathcal{D}; z_0)$ (Definition 2.1). Then

(2.8)
$$\prod_{j=1}^{n} r(z_0, D_j)^{a_j} \leq r(z_0, D^*).$$

As a first application of Theorem 2.2 we obtain the following symmetrization result:

THEOREM 2.3. Let $f(z) = a_1 z + a_2 z^2 + \cdots$ be an analytic function in the unit disk |z| < 1. Let D be the image of |z| < 1 by w = f(z). Let $A = \{a_j\}_1^n$ be a set of positive numbers such that $\sum_{j=1}^n a_j = 1$, let $\{\alpha_j\}_1^n$ be a set of integers $(\alpha_j \neq 0)$ and let $\{\beta_j\}_1^n$ be an arbitrary set of real numbers.

If $R(\phi) = R(\phi; D; 0)$ (see (2.3)) set

(2.9)
$$R^*(\phi) = \prod_{j=1}^n R(\alpha_j \phi + \beta_j)^{b_j}, \quad \text{where } b_j = a_j/|\alpha_j|;$$

(2.10)
$$D^* = \{ w = \sigma e^{i\phi} | 0 \le \sigma < R^*(\phi), 0 \le \phi < 2\pi \}.$$

Then

(2.11)
$$|a_1| \leq r(0, D) \leq r(0, D^*)^{1/b}, \text{ where } b = \sum_{j=1}^{n} b_j.$$

Theorem 2.3 includes as particular cases the radial symmetrization results of Szegö [6], Marcus [4] and Aharonov and Kirwan [1].

We bring now two applications of the preceding theorems.

THEOREM 2.4. Let f(z) and D be as in Theorem 2.3. Denote

(2.12)
$$D_t = \{ w = \sigma e^{i\phi} | 0 \le \sigma < R(\phi)^t, 0 \le \phi < 2\pi \}$$
 (0 < t < 1),

where $R(\phi) = R(\phi; D; 0)$. Then

(2.13)
$$|a_1| \leq r(0, D) \leq r(0, D_t)^{1/t}$$

THEOREM 2.5. Let $f(z) = z + a_2 z^2 + \cdots$ and D be as in Theorem 2.3. Let $R^*(\phi)$ be defined as in (2.9). Suppose that $R^*(\phi) \leq M \leq \infty$, $0 \leq \phi < 2\pi$. Suppose also that for some set of m rays issuing from the origin, with arguments ϕ_1, \ldots, ϕ_m we have

$$\sup_{1\leq j\leq m}R^*(\phi_j)=K.$$

MOSHE MARCUS

Let D_0 be the disk |w| < M (the entire plane if $M = \infty$) cut along the rays $w = \sigma e^{i\phi_j}, K_0 \leq \sigma < M, j = 1, \dots, m$, where K_0 is so chosen that $r(0, D_0)$ = 1. (It follows from our assumptions that $M \ge 1$.) Then $K_0 \le K$.

Theorem 2.5 implies a number of special "covering" theorems such as Theorem 5 and 6 of Marcus [4] and Theorem 4.2 of Aharonov and Kirwan [1].

A complete presentation of the results described in this note and additional applications will appear elsewhere. We mention also that a discussion of radial averaging transformations with metrics of the form $g(r) dr d\phi$ is given in [2].

References

1. D. Aharonov and W. E. Kirwan, A method of symmetrization and applications, Technical Report #70-179, University of Maryland, College Park, Md.; Trans. Amer. Math. Soc. 163 (1972), 369-377.

163 (1972), 369-377.
2. C. Bandle and M. Marcus, Radial averaging transformations with various metrics, Technical Report #71-32, Carnegie-Mellon University, Pittsburg, Pa.
3. W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., no. 48, Cambridge Univ. Press, New York, 1958. MR 21 #7302.
4. M. Marcus, Transformations of domains in the plane and applications in the theory of functions, Pacific J. Math. 14 (1964), 613-626. MR 29 #2382.
5. G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Studies, no. 27, Princeton Univ. Press, Princeton, N.J., 1951. MR 13, 270.
6. G. Szegö, On a certain kind of symmetrization and its applications. Ann. Mat. Pura

6. G. Szegö, On a certain kind of symmetrization and its applications, Ann. Mat. Pura Appl. (4) 40 (1955), 113-119. MR 17, 1074.

DEPARTMENT OF MATHEMATICS, CARNEGIE-MELLON UNIVERSITY, PITTSBURGH, PENNSYL-**VANIA 15213**

Current address: Department of Mathematics, Technion, Haifa, Israel.

460