THE RANGE OF m-DISSIPATIVE SETS

BY CHI-LIN YEN1

Communicated by Felix Browder, August 2, 1971

Let X be a real Banach space and X^* its dual space. We shall give some sufficient conditions for an m-dissipative set A to have range R_A all of X or to be dense in X. The theorems which we shall prove are the following:

THEOREM 1. If A is a coercive, m-dissipative set on X, then $\overline{R}_A = X$.

THEOREM 2. In addition to the assumptions of Theorem 1, suppose that there is a compact operator c on X and a strictly increasing right-continuous function λ such that

$$\lambda(0) = 0$$
 and $\lambda(||x_1 - x_2||) \le ||y_1 - y_2 - (cx_1 - cx_2)||$

whenever $[x_1, y_1], [x_2, y_2] \in A$. Then $R_A = X$.

THEOREM 3. Let X be a reflexive Banach space. If A is a coercive, demiclosed, m-dissipative set on X, then $R_A = X$.

DEFINITION. A mapping J of X into 2^{X^*} is said to be the *duality mapping* if $Jx = \{w \in X^*; ||w|| = ||x||, w(x) = ||x||^2\}$ for all $x \in X$.

It is easy to see that for each $x \in X$, Jx is a nonempty, closed, convex, bounded subset of X^* . Thus, for any $z \in X$, $x \in X$, there is $y \in Jx$, such that $y(z) = \inf\{w(z) : w \in Jx\}$ and we use $\langle z, x \rangle$ to denote y(z).

DEFINITION. A is said to be a dissipative set on X if A is a subset of $X \times X$ such that for $[x_1, y_1], [x_2, y_2]$ in $A, \langle y_1 - y_2, x_1 - x_2 \rangle \leq 0$.

T. Kato [5] showed that the above definition is equivalent to the following: for every pair $[x_1, y_1]$, $[x_2, y_2]$ in A and $t \ge 0$,

$$||x_1 - x_2 - t(y_1 - y_2)|| \ge ||x_1 - x_2||.$$

Hence, if A is a dissipative set then $(1 - tA)^{-1}$ is a nonexpansive mapping on $R_{(1-tA)}$ into X for $t \ge 0$. We will say that A is *m*-dissipative if $R_{(1-tA)} = X$ for all $t \ge 0$. It is known that A is *m*-dissipative if and only if A is dissipative and $R_{(1-A)} = X$ (see S. Ôharu [6]).

DEFINITION. A dissipative set A is said to be coercive if $A^{-1}(B) = \{ y \in X ; Ay \cap B \neq \emptyset \}$ is bounded whenever B is a bounded subset of X.

DEFINITION. A is said to be demiclosed if A has the property that $x_n \to x_0$, $y_n \to y_0$, $[x_n, y_n] \in A$, for all $n = 1, 2, \ldots$, implies $[x_0, y_0] \in A$.

AMS 1970 subject classifications. Primary 47B44.

Key words and phrases. m-dissipative set, coercive, demiclosed, range of dissipative set.

The author is grateful to Professor G. F. Webb for suggesting this topic.

Clearly, if T is accretive in the sense of Browder [1], [2], [3], then -T is dissipative (the converse is not true). We can easily show that -T is m-dissipative in Browder's results [3, Theorem 5 and Theorem 6], and thus, Theorem 3 is a generalization of those results. We note that Theorem 1 is set in a general Banach space and in this case, under the assumptions of Theorem 1, R_A may not equal X (see R. Martin [4]).

PROOF OF THEOREM 1. Since A is m-dissipative, so is $A_{\mu} = A - \mu I$ for all $\mu \ge 0$. Thus for any $\mu > 0$, $\eta > 0$ and $y_i \in A_{\mu}x_i$, i = 1, 2, then

$$||(x_1 - x_2) - \eta(y_1 - y_2)|| = ||(1 + \mu \eta)(x_1 - x_2) - \eta((y_1 + \mu x_1) - (y_2 + \mu x_2))|| \ge (1 + \mu \eta) ||x_1 - x_2||.$$

Hence $(1 + \eta A_u)^{-1}$ is a Lipschitz continuous mapping on X with Lipschitz constant $(1 + \eta \mu)^{-1}$ and hence there is $x_{\mu} \in X$ such that $(1 + \eta A_{\mu})^{-1} x_{\mu}$ $= x_{\mu}$ or $\mu x_{\mu} \in Ax_{\mu}$. Now we want to show that $\{\mu x_{\mu}; 0 < \mu \leq \delta\}$ is bounded. For $0 < \mu \le \nu \le \delta$,

$$\begin{aligned} \mu ||x_{\mu} - x_{\nu}||^2 & \leq \mu \langle x_{\mu} - x_{\nu}, x_{\mu} - x_{\nu} \rangle - \langle \mu x_{\mu} - \nu x_{\nu}, x_{\mu} - x_{\nu} \rangle \\ & \leq (\nu - \mu)||x_{\nu}|| \ ||x_{\mu} - x_{\nu}||. \end{aligned}$$

Thus, $\mu ||x_{\mu}|| \le \nu ||x_{\nu}||$ and we have shown that $\{\mu x_{\mu}; 0 < \mu \le \delta\}$ is bounded. It follows from the coercivity of A that $\{x_{\mu}; 0 < \mu \leq \delta\}$ $\subseteq A^{-1}(\{\mu x_{\mu}; 0 < \mu \leq \delta\})$ is bounded, thus $\mu x_{\mu} \to 0$ as $\mu \to 0$, and $0 \in \overline{R}_A$. Since, for any $x \in X$, the set $A_1 = \{(\mu, \nu - x); (\mu, \nu) \in A\}$ is coercive and *m*-dissipative, it follows from the above argument that we have $0 \in \overline{R}_{A_1}$ or $x \in \overline{R}_A$. Consequently, $\overline{R}_A = X$.

The proof of Theorem 2 follows directly from Theorem 1 and the lemma below. The proof of the lemma is straightforward.

LEMMA. Let A be a closed subset of $X \times X$. If there is a compact operator c on X and a strictly increasing right-continuous function λ on $[0, \infty)$ such that $\lambda(0) = 0$ and for $[x_1, y_1], [x_2, y_2]$ in $A, ||y_1 - y_2 - (cx_1 - cx_2)||$ $\geq \lambda(||x_1 - x_2||)$, then R_A is closed.

PROOF OF THEOREM 3. By Theorem 1 we need only to show that R_A is closed. For $y_0 \in \overline{R}_A$, there is sequence $\{[x_n, y_n]; n = 1, 2, ...\}$ in A such that $y_n \to y_0$. Since $\{y_n\}$ is bounded and A is coercive, $\{x_n\} \subseteq A^{-1}(\{y_n\})$ is bounded. By the reflexivity of X we may assume that $x_n - x_0$ for some $x_0 \in X$. It follows, from the demiclosedness of A, $[x_0, y_0] \in A$. Hence, R_A is closed.

REFERENCES

^{1.} F. E. Browder, Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc.

^{73 (1967), 470–476.} MR 35 # 3496.
2. _____, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 867–874. MR 38 # 580.

- 3. ——, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 38 #581.
 4. R. H. Martin, Lyapunov functions and autonomous differential equations in a Banach
- space (to appear).
- T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 37 #1820.
 S. Öharu, Note on the representation of semi-groups of non-linear operators, Proc. Japan Acad. 42 (1966), 1149-1154. MR 36 #3167.

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37203 Institute of Mathematics, Academia Sinica, Taipei, Taiwan