MINIMALITY IN FAMILIES OF SOLUTIONS OF $\Delta u = Pu$ ON RIEMANNIAN MANIFOLDS

BY KWANG-NAN CHOW

Communicated by Felix Browder, June 17, 1971

The notion of minimality of solutions of $\Delta u = Pu$ was first introduced by C. Constantinescu and A. Cornea in 1958. On a Riemann surface, M. Nakai has given a complete characterization of the minimality in the monotone closure of the family of all Dirichlet-finite harmonic functions. His characterization is in terms of a positive bounded regular Borel (representing) measure on the Royden boundary of the Riemann surface (cf. [6]). In this paper we announce that not only his work for the harmonic functions can be generalized for the solutions of the elliptic differential equation $\Delta u = Pu$ on a Riemannian manifold, but more significantly, the property of the existence of a minimal function is to a large extent an intrinsic part of the manifold, perhaps a quasi-conformal or quasi-isometric invariant.

Consider a Riemannian manifold R and the elliptic differential equation $\Delta u = Pu$ on R, where P is nonnegative C^1 . For simplicity, solutions of $\Delta u = Pu$ will be called solutions. Let R^* be the Royden compactification, $\Gamma = R^* \setminus R$ the Royden boundary and Δ the harmonic boundary of R (cf. [6]). The open subset $\Delta^P = \{q \in \Delta : q \text{ has a neighborhood } U \text{ in } R^* \text{ with } \int_{U \cap R} P < \infty \}$ of Δ introduced in [2] is crucial for solutions.

Following the pattern that Nakai has established in [6] for harmonic functions and using the results of Glasner-Katz [1, Theorems 1 2], we can construct a positive bounded regular Borel (representing) measure m^P on Γ centered at $z_0 \in R$ with support equal to the closure of Δ^P characterized by $u(z_0) = \int_{\Gamma} u \, dm^P$ for every solution u with finite energy integral (the so-called PE-function). Moreover, using Harnack's inequality we can also construct a nonnegative kernel $K^P(z,q)$ on $R \times \Gamma$ with the property $u(z) = \int_{\Gamma} K^P(z,q)u(q) \, dm^P(q)$ for all $z \in R$ and for all PE-functions u. Note that when $P \equiv 0$, m^0 and $K^0(z,q)$ are the corresponding measure and kernel for harmonic functions constructed by Nakai in [6].

Nakai's characterization for HD~-functions and HD~-minimal

AMS 1970 subject classifications. Primary 31B10, 31B25, 31B35; Secondary 31B05. Key words and phrases. Riemannian manifold, Royden boundary, solution, energy integral, PE-function, PE~-function, representing measure.

functions can also be generalized for the corresponding PE -functions and PE -minimal functions.

DEFINITION. A nonnegative solution is called a PE-function if it is the infimum of a downward directed family of PE-functions. The collection of all PE-functions on R is denoted by PE-(R).

THEOREM. If χ_C is the characteristic function of a compact subset C of Δ^P , then

$$u(z) = \int_{\Gamma} K^{P}(z, q) \chi_{C}(q) dm^{P}(q)$$

is a PE -function.

THEOREM. If $u \in PE^{\tilde{}}(R)$, then

$$u(z) = \int_{\Gamma} K^{P}(z, q) \left(\lim_{x \in R; x \to q} u(x) \right) dm^{P}(q)$$

for all $z \in R$.

DEFINITION. A nonzero PE^{\sim} -function u is called a PE^{\sim} -minimal function if for any PE^{\sim} -function ν such that $u \ge \nu$ we have $cu = \nu$ for some constant c.

THEOREM. There exists a PE^- -minimal function on R if and only if there exists a point in Δ^P with positive m^P -measure.

More precisely, if u is PE^{\sim} -minimal, then there is a point $q_0 \in \Delta^P$ with $m^P(q_0) > 0$ and $u(z) = aK^P(z, q_0)$ for some constant a. Conversely, if $m^P(q_0) > 0$ for some $q_0 \in \Delta^P$, then $K^P(z, q_0)$ is a PE^{\sim} -minimal function.

THEOREM (Intrinsic property of minimal functions). For any $q_0 \in \Delta^P$, $m^P(q_0) > 0$ if and only if $m^0(q_0) > 0$.

This theorem is a special case of the following stronger result.

THEOREM. For any connected set $S \subset \Delta^P$, $m^P(S) > 0$ if and only if $m^0(S) > 0$.

Outline of the proof. Since the representing measures are regular, we may assume without loss of generality that S is compact.

To prove the necessity, observe that nonnegative harmonic functions, being supersolutions, dominate solutions with the same values on Δ . It can thus be proved that $m^0(S) \ge m^P(S)$.

The proof of the sufficiency is divided into four steps.

Step 1. When $\int_R P < \infty$, Royden has proved in [5] (also cf. Nakai [3]) that HB(R) and PB(R) are isometrically isomorphic with respect

to the sup norm. Under this isometric isomorphism, it can be shown that those HBD-functions and PBE-functions which have the same values on Δ correspond to one another. Consequently, those HD-and PE-functions which are characterized by the same compact subsets of Δ^P correspond to one another. In other words, a compact subset of Δ^P is of positive m^0 -measure if and only if it is of positive m^P -measure.

Step 2. It is now a matter of reducing the problem to the case of $\int_R P < \infty$. A modification of Nakai's result [4, Proposition 9], shows that if $m^0(S) > 0$, where $S \subset \Delta$ is connected and compact, then for any open set U in R^* containing S, there is an open set V in R^* containing S such that $V \subset U$ and $V \cap R$ is a region. In particular, we can find such an open set V that $\int_{V \cap R} P < \infty$ because S is a compact subset of Δ^P .

Step 3. Let $G = V \cap R$. G, being itself a Riemannian manifold, have its own Royden compactification G^* , Royden boundary Γ_G and representing measures m_G^0 , m_G^P on Γ_G . Nakai [4, Propositions 7, 8] has observed that there is a unique continuous mapping j of G^* onto cl G, the closure of G in R^* , which fixes G elementwise. Moreover, j is a homeomorphism from $G \cup j^{-1}((\operatorname{cl} G \setminus \operatorname{cl} \partial G) \cap \Gamma)$ to $G \cup ((\operatorname{cl} G \setminus \operatorname{cl} \partial G) \cap \Gamma)$. A nontrivial generalization of Nakai's work [4, Proposition 8] implies that S has positive m_G^P -measure if and only if $j^{-1}(S)$ has positive m_G^P -measure. In particular, $m_G^0(j^{-1}(S)) > 0$ since $m_G^0(S) > 0$.

Step 4. By Step 1, $m_G^0(j^{-1}(S)) > 0$ implies that $m_G^P(j^{-1}(S)) > 0$. This in turn implies that $m_G^P(S) > 0$ by Step 3.

REFERENCES

- 1. M. Glasner and R. Katz, A note on the Royden boundary, Bull. Amer. Math. Soc. 75 (1969), 945-947. MR 40 #394.
- 2. , On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. Analyse Math. 22 (1969), 343–354. MR 41 #1995.
- 3. M. Nakai, The space of bounded solutions of the equation $\Delta u = Pu$ on a Riemann surface, Proc. Japan Acad. 36 (1960), 267-272. MR 22 #12216.
- 4. ——, Genus and classification of Riemann surfaces, Osaka Math. J. 14 (1962), 153-180. MR 25 #4091.
- 5. H. L. Royden, The equation $\Delta u = Pu$ and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI No. 271 (1959), 27 pp. MR 22 #12215.
- 6. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin and New York, 1970.

San Fernando Valley State College, Northridge, California 91324

Current address: California Institute of Technology, Pasadena, California 91109