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The notion of minimality of solutions of Au = Pu was first intro­
duced by C. Constantinescu and A. Cornea in 1958. On a Riemann 
surface, M. Nakai has given a complete characterization of the mini­
mality in the monotone closure of the family of all Dirichlet-finite 
harmonic functions. His characterization is in terms of a positive 
bounded regular Borel (representing) measure on the Royden bound­
ary of the Riemann surface (cf. [ó]). In this paper we announce that 
not only his work for the harmonic functions can be generalized for 
the solutions of the elliptic differential equation Au — Pu on a Rieman-
nian manifold, but more significantly, the property of the existence 
of a minimal function is to a large extent an intrinsic part of the mani­
fold, perhaps a quasi-conformal or quasi-isometric invariant. 

Consider a Riemannian manifold R and the elliptic differential 
equation Au—Pu on R, where P is nonnegative C1. For simplicity, 
solutions of Au~Pu will be called solutions. Let R* be the Royden 
compactification, T — R*\R the Royden boundary and A the har­
monic boundary of R (cf. [ó]). The open subset A p = {qÇzAlq lias a 
neighborhood U in R* with f unit P< °° } of A introduced in [2] is 
crucial for solutions. 

Following the pattern that Nakai has established in [ó] for har­
monic functions and using the results of Glasner-Katz [l, Theorems 1 
2], we can construct a positive bounded regular Borel (representing) 
measure mp on T centered at z^CzR with support equal to the closure 
of Ap characterized by u(z0) —fru dmp for every solution u with 
finite energy integral (the so-called PE-iunction). Moreover, using 
Harnack's inequality we can also construct a nonnegative kernel 
Kp(z, q) on RXT with the property u(z) = / r Kp(z, q)u{q) dmp(q) for 
all z(ER and for all PE-i unctions u. Note that when P ^ O , m° and 
K°(z, q) are the corresponding measure and kernel for harmonic func­
tions constructed by Nakai in [ó]. 

Nakai's characterization for HD~-functions and HZ)~-minimal 
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functions can also be generalized for the corresponding PE " -functions 
and PE"-minimal functions. 

DEFINITION. A nonnegative solution is called a PE"-function if it 
is the infimum of a downward directed family of PE-functions. The 
collection of all PE"-functions on R is denoted by PE" (R). 

THEOREM. If xc is the characteristic function of a compact subset C 
of Ap, then 

u(z) = I Kp(z, q)xM dmp{q) 
J r 

is a PE"-function. 

THEOREM. Ifu£PE"(R), then 

u(z) = I Kp(z, q) [ lim sup u(x) ) dmp(q) 
J j> \xeR ; x-*a / 

for all z^R. 

DEFINITION. A nonzero PE"-function u is called a PE"-minimal 
function if for any PE"-function v such that u^v we have cu=v for 
some constant c. 

THEOREM. There exists a PE"-minimal function on Rif and only if 
there exists a point in Ap with positive mp-measure. 

More precisely, if u is PE"-minimal, then there is a point go£Ap 

with mp(qo)>0 and u(z) —aKp(z, q0) for some constant a. Conversely, 
if mp(qo) > Ofor some g 0 £A p , then Kp(zf q0) is a PE" -minimal function. 

THEOREM (Intrinsic property of minimal functions). For any 
#o£Ap , mp(q0) > 0 if and only if m0(q0)>0. 

This theorem is a special case of the following stronger result. 

THEOREM. For any connected set 5CA P , mp(S)>0 if and only if 
m°(S)>0. 

OUTLINE OF THE PROOF. Since the representing measures are regu­
lar, we may assume without loss of generality that S is compact. 

To prove the necessity, observe that nonnegative harmonic func­
tions, being supersolutions, dominate solutions with the same values 
on A. It can thus be proved that m°(S)'^mp(S). 

The proof of the sufficiency is divided into four steps. 
Step 1. When fRP<<x>, Royden has proved in [5] (also cf. Nakai 

[3]) that HB(R) and PB(R) are isometrically isomorphic with respect 
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to the sup norm. Under this isometric isomorphism, it can be shown 
that those HBD-iunctions and PBE-iunctions which have the same 
values on A correspond to one another. Consequently, those HD~-
and PE~-functions which are characterized by the same compact 
subsets of Ap correspond to one another. In other words, a compact 
subset of Ap is of positive w°-measure if and only if it is of positive 
rap-measure. 

Step 2. I t is now a matter of reducing the problem to the case of 
JRP<<X>. A modification of Nakai's result [4, Proposition 9], shows 
that if m°(S) > 0 , where SCA is connected and compact, then for any 
open set U in R* containing 5, there is an open set V in R* containing 
S such that V(Z U and VC\R is a region. In particular, we can find 
such an open set V that JVHR P< °° because S is a compact subset 
of Ap. 

Step 3. Let G = VC\R. G, being itself a Riemannian manifold, have 
its own Royden compactification G*, Royden boundary TG and repre­
senting measures m%, MQ on YQ. Nakai [4, Propositions 7, 8] has 
observed that there is a unique continuous mapping j of G* onto cl G, 
the closure of G in i£*, which fixes G elementwise. Moreover, j is a ho-
meomorphism from GUrKCcl G\cl dG)C\T) to GU((clG\cl dG)r\T). 
A nontrivial generalization of Nakai's work [4, Proposition 8] im­
plies that S has positive mp-measure if and only if j^iS) has positive 
Wö-measure. In particular, m%(j~l(S)) > 0 since m°(S) > 0. 

Step 4. By Step 1, m°G(j-1(S))>0 implies that m^(j~1(S))>0, This 
in turn implies that mp(S) > 0 by Step 3. 
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