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Let R be a commutative ring with identity, let X be a single 
indeterminate, and let I be an ideal of i^[-ST]. Denote by min / the 
set { / ^ 0 G / | d e g / g d e g g for all g ^ O G / } . Let c(J) denote the Weal 
of R generated by the coefficients of the elements of / . We use R for 
the integral closure of R (in its total quotient ring) and J(R) for the 
intersection of the maximal ideals of R. By a regular element, we mean 
a nonzero-divisor. An i^-module M is called torsion-free if rtn—0, 
rÇER, nt7*0ÇzM, implies r is a zero-divisor of R. 

1. Main results. (Proofs and details will appear elsewhere.) We 
assume throughout this section that min I contains a regular element 
ofR[X]. 

1.1 THEOREM. If R[X]/I is a flat R-rnodule, then I is a finitely 
generated ideal of R [X], 

The proof proceeds as follows. First prove the theorem in the case 
that R is quasi-local integrally closed with infinite residue field. Then 
remove the infinite residue field assumption by adjoining an indetermi­
nate. Next remove the quasi-local assumption, and finally remove the 
assumption that R be integrally closed. 

If R is integrally closed, the generators of J in 1.1 can be chosen 
from min / . In proving 1.1, we obtain the following more precise 
result in the case that R is quasi-local integrally closed. 

1.2 THEOREM. If R is quasi-local integrally closed, then the following 
are equivalent: 

(i) I is principal and c(I) = R. 
(ii) R[X]/IisR-flat. 
(iii) R[X]/Iis R-torsion-free and c(I) = R. 

Actually, (i)=>(ii)=>(iii) is valid for arbitrary Rf while only (iii)=>(i) 
requires that R be quasi-local integrally closed. ((ii)=»(i) can also be 
proved for slightly more general R, namely if R is the integral closure 
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of a quasi-local ring R0 and I is the extension of an ideal of 2?o[X], or 
if R is quasi-local and J(R) C-R.) 

The following is a corollary to 1.1. 

1.3 COROLLARY. R[X]/I is R-flat if and only if I is an invertible 
ideal and c(I) =R. 

In the case of a quasi-local R, the following theorem gives some 
additional interpretations of 1.2(i). We state the theorem for arbi­
trary R, in which case this condition translates to / being locally 
principal at primes of R and c(I) =R. 

1.4 THEOREM. Let £ denote the equivalence class of X in R[X]/I. 
Then the following are equivalent : 

(i) R+ÇR + • • • +?Ris flat for all fèO. 
(ii) R+ÇR+ • • • +?R is flat for some t^Ofor which 1, £ , • • • , £+ 

are linearly dependent over R. 
(iii) For every prime ideal P of R, IRp [X] is principal generated by 

an element of min IRP[X], and c(I) =R. 
(iv) I = (/i, • • • ,ƒ»),ƒ,-£ min I , and c(I)=R. 
(v) c(min I)=R. 

Moreovert if ^ is a regular element of R[i*], then (i)-(v) are equivalent to 
(vi) JR[£] and R[l/£] are R-flat. 

Finallyj if R is integrally closed, then (i)-(v) are also equivalent to the 
equivalent assertions of 1.3. 

Recall that we have assumed throughout §1 that min I contains a 
regular element. Most of the results of this section are false without 
this assumption. A pertinent example is easily constructed as follows: 
Let A be any nonfinitely generated ideal of an absolutely flat ring R. 
(For example, take R to be the countable direct product of a field k 
and A to be the countable direct sum of copies of k.) Then let 
I = AR[X]+XR[X], I is not finitely generated because A is not, 
and R[X]/I is i£-flat because R is absolutely flat. 

2. A theorem of Vasconcelos. We now drop the assumption that 
min I contains a regular element, so that henceforth I is an arbitrary 
ideal of i ? [X] . The proofs of the above theorems, when I is finitely 
generated or principal, involve significant difficulties. If one is willing 
to skirt these difficulties, however, by means of various finiteness 
assumptions on either / or R[X]/I, then a number of further results 
can be obtained without great effort. 

Vasconcelos has proved the following interesting theorem [3, p. 
105]. 
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Suppose R is noetherian. Then / is a projective ideal of i?[X] with 
c(I) generated by an idempotent if and only if R[X]/I is jR-flat. 
Moreover, if c(I) =R and R[X]/I is ^-projective, then R[X]/I is a 
finite jR-module. 

2.1, 2.2, and 2.3 constitute a nonnoetherian generalization of this 
theorem. First, let us call an ideal A of R locally trivial if for every 
prime ideal P of R, either ARp = 0 or ARP=RP. 

2.1 PROPOSITION. If I is locally principal at primes of R[X] and 
c(I) is locally trivial, then R[X]/I is R-flat. Conversely, if R[X]/I is 
R-flat, then c(I) is locally trivial and I is locally principal at any prime 
P' of R[X] for which IR[X]P' is finitely generated. 

The first assertion of 2.1 is even true for a polynomial ring in arbi­
trarily many indeterminates. 

2.2 THEOREM. The following are equivalent: 
(i) 7 is a projective ideal of R[X], and c(I) is generated by an idem-

potent. 
(ii) R[X]/I is R-flat, and I is a finitely generated ideal of R[X], 
(iii) / is a finitely generated flat ideal of R[X], and c(I) is generated 

by an idempotent. 

2.3 THEOREM. Let R be a ring for which finitely generated flat R-
modules are projective (e.g. a domain, a noetherian ring, or a quasi-local 
ring). If R[X]/I is R-projective and c(I) =R, then R[X]/I is a finite 
R-module and I is a finitely generated ideal. 

The conclusion of 2.3 can be sharpened in the case that R is quasi-
local to read that / is a principal ideal of R [X] generated by a regular 
element. Moreover, if R is an arbitrary ring and R[X]/I is assumed 
finite and projective, then / is finitely generated; and, in fact, this 
remains valid when i^f-X'] is replaced by any finitely generated R-
algebra. 

We next give a new characterization of rings for which finitely 
generated flat modules are projective which gives an interesting per­
spective to our theorems of §1. 

2.4 THEOREM. The following statements f or a ring R are equivalent: 
(i) Finitely generated flat R-modules are projective. 
(ii) For any ideal I of R [X ], R [X ]/I is a finite flat R-module implies 

I is a finitely generated ideal. 

Of course, the finiteness assumption in 2.4(ii) is the rub. Question. 
Does 2.4 remain valid when the word "finite" is deleted from 2.4(H)? 
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It follows from 1.1 that any domain satisfies this modified 2.4(ii), so 
probably the next rings for which one should at tempt to establish 
it are quasi-local rings. 

3. Nagata's theorem. The theorem that originally motivated our 
work on these questions is the following theorem of Nagata [l, 
Theorem 3, p. 164]: If R is a valuation ring, then R[Xi, • • • , Xn]/I 
is i?-flat implies J is a finitely generated ideal. I t can be seen that this 
theorem is rather trivial in the case of one indeterminate. At present 
the only further progress on the case of a polynomial ring in n in-
determinates seems to be the paper [2] of Nagata. 

An analysis of Nagata's proof of this theorem shows that it actually 
yields the following result. Let <p:R[Xi, • • • , Xn]—*R[Xi, • • • ,Xn]/I 
be the canonical homomorphism, and let Mi denote the i^-submodule 
of R[Xi, • • • , Xn] generated by the monomials of degree i. 

3.1 THEOREM. Suppose R/J(R) is noetherian. If ]Cî-o^(-^») is 
R-flatfor every k*zO, then I is a finitely generated ideal. 

3.2 COROLLARY. Suppose R/J(R) is noetherian. If lis a homogeneous 
ideal of R[Xh • • • , Xn], or if Ris semihereditary, then R[Xh • • • ,Xn]/I 
is R-flat implies I is a finitely generated ideal. 
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