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Let Diffr(.Mn) be the space of Cr diffeomorphisms of a compact C°° 
w-manifold M with the Cr topology, l ^ r g oo. Central problems in 
the study of differentiable dynamical systems, as formulated by 
Smale [8], [9] are: 

(a) Find a Baire subset B of Diffr(ikfn) with strong stability proper­
ties. 

(b) Find a practical means of classifying the elements of B. 
Smale's survey article [8] is a general reference to these problems 

and to the definitions of the basic notions used in this abstract. 
During the last decade, a number of unsuccessful candidates for B 

have been studied. Among these are Morse-Smale diffeomorphisms, 
structurally stable diffeomorphisms, maps satisfying "Axiom A", 
and fl-stable diffeomorphisms. The latter two classes were shown to 
be nongeneric in Diffr(ikfn) by Abraham and Smale [l ], for r ^ l , w ^ 4 , 
and by Newhouse [7], for r^2, n = 2. However, it has been empha­
sized ([9], for example) that many more counterexamples to the 
genericity of fl-stable and Axiom A diffeomorphisms must be con­
structed for the theory to advance, especially since each new conjec­
ture for B has arisen from careful analysis of past counterexamples. 
The examples described below are the first such counterexamples in 
DifP(Af3). More significantly, all the above classes of diffeomorph­
isms conjectured to solve problem (a) have had the following prop­
erty: All maps close enough to any diffeomorphism in the class have 
the same number of periodic points of each period as the original map. 
Theorem 1 illustrates that this is not a generic property. 

THEOREM 1. Let \SrS °°. For /EDif f r ( r 3 ) and positive integer n, 
let Nn(J)= number of fixed points offn~f of o • • • (n-times) • • • of: 
TZ-*TZ. Then, there exists an open set U in Diffr(!T3) such that iffiÇz U 
and TJ\ is any neighborhood offi in U, there isf2G. Ui and integer n such 
that Nn(fi) T^NnfJz) and all periodic points of f2 of period Sn are hy­
perbolic. 
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Before discussing the proof of Theorem 1, let us see what effect it 
has on problem (b), the classification problem. In [8], Smale con­
jectured that an effective means of classifying the maps in B might 
be the zeta function. The zeta function of a diffeomorphism ƒ, Ç(t) 
:=Uf)(t)=exp(J^Z1Nit

i/i) where N^NifJ) as in Theorem 1. 
Artin and Mazur [2] have shown that a dense set of diffeomorphisms 
have zeta functions with a positive radius of convergence. Gucken-
heimer [4] has shown that if ƒ satisfies Axiom A and the no-cycle 
property, f (ƒ) is rational. However, in order to be at all effective and 
practical as a means of classification, f (ƒ) must be rational for a Baire 
set of diffeomorphisms. Whether or not, f (ƒ) is generally rational was 
asked in [8, Problem 4.5], [10], [ l l ] , and [12]. Theorem 2 uses 
Theorem 1 to answer this question. 

THEOREM 2. Diffeomorphisms with rational zeta f unctions do not form 
a Baire subset of Differ3) , 1 ̂ r g oo. 

PROOF OF THEOREM 2. Enumerate the countable set [3] of rational 
zeta functions as Zi, Z2, • • • , where Zj(t) ==exp(^°Li Nty/i). Let U 
be the open set in Differ3) from Theorem 1. Let V> = {f E U\ f (ƒ) ^ Z y 

and there is an i such tha t /* has only hyperbolic fixed points with 
Niif)^^}. By the hyperbolicity in the definition of Vy, each Vj is 
open. Using the Kupka-Smale Theorem and Theorem 1, it is easily 
seen that each Vj is also dense. Then, V~Ç\Vj is a Baire subset of Z7; 
and no diffeomorphism in V can have a rational zeta function. 

Finally, Theorem 3 below deals with another aspect of the classifi­
cation problem. I t states that fl-conjugacy is not a reasonable equiva­
lence relation to use in classifying diffeomorphisms. The same result 
holds for any equivalence relation which has all Nn(f) constant in 
each equivalence class. The proof of Theorem 3 is the same as that of 
Theorem 2 with NÎ replaced by Ni(hj). 

THEOREM 3. There does not exist a countable set {hj} and a Baire 
subset B in Diffr(r3) such that each f in B is unconjugate to some hj. 

SKETCH OF PROOF OF THEOREM 1. Let A:T2—*T2 be a hyperbolic 
toral automorphism, i.e., a map on T2 induced by a matrix in Gl(2, Z) 
with determinant 1 and eigenvalues off the unit circle. The stable 
manifolds { W*} oi A give a foliation [5] of T2. Let g\ T2-+T2 be the 
corresponding "derived from Anosov" map [13], [&]. g respects the 
above foliation of A, i.e,, maps leaves to leaves, but has two new fixed 
points, Xo and yo. The non wandering set of g, 0(g), contains a one-
dimensional attractor S. Let h:Sl-*Sl be a hyperbolic diffeomorph­
ism with one sink, { — l } , and one source, { + l } . Then, gXh is a 
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hyperbolic diffeomorphism of T3^T2XS\ Let b be a C00 bump f une-
tion on T* which is the identity near S X { + 1 } and near T2 X[{ - 1 } , 
but which forces the two-dimensional local unstable manifold of 
(xo, + 1 ) to intersect the one-dimensional stable manifold of (x0, + 1 ) 
transversally. One constructs b so that it preserves the foliation of 
P X S 1 whose leaves are W'XSK Letƒ=& o (gXh). Diagram 1 shows 
the local stable and unstable manifold structure for/around (x0, + 1 ) ; 
and Diagram 2 pictures this structure on a piece of the leaf F of the 
foliation that contains (xQ, l ) . / : « ( / | F)->®(f\ F) is topological^ con­
jugate to the shift map on 3Z. The "circle" c in Diagram 1 lies in 

C<V X) 

DIAGRAM 1 

C<*o>i>nF 

n>o.D 

DIAGRAM 2 

WToofro, l ) H P X { + l } and intersects a (one-dimensional) TFfooCy) 
nontransversally for some y G 2 X { + l } . This point of intersection 
is nonwandering by the "cloud lemma" [ l ] , [8] since W'(x0, 1) and 
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Wu(y) meet transversally on S X { + 1 } . Because the intersection was 
not transversal, this non wandering point is not hyperbolic; and there­
fore ƒ does not satisfy Axiom A. 

ƒ is normally-hyperbolic with respect to the foliation [6]. Let U be 
a neighborhood of ƒ in Diffr(r3) such that for ƒ ' in U the stable and 
unstable manifolds of (x0, 1) meet as above and ƒ' respects a foliation 
near the foliation of ƒ. By similar arguments, no ƒ ' in U satisfies 
Axiom A. I f / iG U, one chooses ƒ2 as close as one wishes to ƒ1 and equal 
to ƒ1 near the one-dimensional attractor "2 X { + 1 } " of jfi. Let 3/1 cor­
respond for jfi and y2 correspond for f2 to the above y for ƒ. Choose f2 

so that yi and y2 do not lie on the same stable manifold. Then, there 
exists a point z, periodic for both jfi and ƒ2, whose local stable manifold 
lies between that of yi and that of 3/2. If n is the period of z, F\ is the 
leaf of z for the foliation of jfi, and F2 is the leaf of z for the foliation 
of ƒ2, one checks that f\\ F\\Fi-*F\ has a different number of fixed 
points t han / " | F2: F2-^F2. The construction of f2 relies on stable mani­
fold theory and transversality. In perturbing f% to ƒ2, one can be care­
ful and keep track of periodic points of period n off the leaf F\ so that 
Nn(fi) will differ from Nn(f2). Finally, one achieves the hyperbolicity 
mentioned in Theorem 1 by using the Kupka-Smale Theorem in the 
construction of /2 . 
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