ON THE MEAN CURVATURE OF SUBMANIFOLDS OF EUCLIDEAN SPACE

BY BANG-YEN CHEN1

Communicated by S. Sternberg, April 12, 1971

Let $x: M^n \to E^m$ be an immersion of an *n*-dimensional manifold M^n in a euclidean space E^m of dimension m (m > n > 1), and let ∇ and ∇' be the covariant differentiations of M^n and E^m , respectively. Let u and v be two tangent vector fields on M^n . Then the second fundamental form h is given by

(1)
$$\nabla'_{u}v = \nabla_{u}v + h(u,v).$$

If $\{e_1, \dots, e_n\}$ is an orthonormal basis in the tangent space $T_p(M)$ at $p \in M^n$, then the mean curvature vector H(p) at p is given by

(2)
$$H(p) = (1/n) \sum_{i=1}^{n} h(e_i, e_i).$$

Let \langle , \rangle denote the scalar product of E^m . If there exists a function f on M such that $\langle h(u, v), H \rangle = f\langle u, v \rangle$ for all tangent vector fields u, v on M^n , then M^n is called a *pseudo-umbilical submanifold* of E^m . If the covariant derivative of H in E^m is tangent to $x(M^n)$ everywhere, then H is said to be parallel in the normal bundle. In [2], [3], the author proved that if M^n is closed, then the mean curvature vector H satisfies

(3)
$$\int_{\mathcal{U}^n} \langle H, H \rangle^{n/2} dV \ge c_n,$$

where dV denotes the volume element of M^n and c_n is the area of the unit n-sphere. The equality sign of (3) holds when and only when M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^m . It is interesting to know whether the inequality (3) can be improved for some special submanifolds of E^m .

The main purpose of this paper is to announce some results in this direction together with some results on pseudo-umbilical submanifolds. Details will appear elsewhere.

AMS 1970 subject classifications. Primary 53A05, 53A10, 53B25; Secondary 53C40.

Key words and phrases. Mean curvature vector, minimal surface, pseudo-umbilical submanifold, Clifford torus, ath curvatures of first and second kinds.

¹ This work has been supported in part by NSF Grant GU-2648.

By studying the behaviors of the mean curvature vector \boldsymbol{H} we can prove

LEMMA 1. The position vector field X of M^n in E^m is parallel to the mean curvature vector H when and only when M^n is either a minimal submanifold of E^m or a minimal submanifold of a hypersphere of E^m centered at the origin.

By using Lemma 1, we can prove

PROPOSITION 1 (YANO-CHEN [5]). M^n is a pseudo-umbilical submanifold of E^m such that the mean curvature vector H is parallel in the normal bundle when and only when M^n is either a minimal submanifold of E^m or a minimal submanifold of a hypersphere of E^m .

If the codimension is equal to 2, then a pseudo-umbilical submanifold of E^m with constant mean curvature is always a pseudo-umbilical submanifold such that the mean curvature vector is parallel in the normal bundle. Hence we have

PROPOSITION 2. M^n is a pseudo-umbilical submanifold of E^{n+2} with constant mean curvature when and only when M^n is either a minimal submanifold of E^{n+2} or a minimal hypersurface of a hypersphere of E^{n+2} .

Let F be a field and $H_i(M^n, F)$ denote the ith cohomology group of M^n over the field F. Let $\beta(M^n) = \max \{ \sum_{i=0}^n \dim H_i(M^n, F); F \text{ fields} \}$. Then, by verifying the properties of the length of second fundamental form h, we can prove

Theorem I. Let M^n be an n-dimensional closed manifold immersed in E^m with nonnegative scalar curvature. Then we have

(4)
$$\int_{M^n} \langle H, H \rangle^{n/2} dV > a\beta(M^n),$$

where

(5)
$$a = (4n^n)^{-1/2}c_n, \quad \text{if } n \text{ is even}, \\ = (2n^nc_{m-n-1}c_{m+n-1})^{-1/2}(c_{2n})^{1/2}c_{m-1}, \quad \text{if } n \text{ is odd}.$$

THEOREM II. Let M² be a flat torus in E⁴. Then we have

(6)
$$\int_{M^2} \langle H, H \rangle dV \ge 2\pi^2.$$

Then the equality sign of (6) holds when and only when M^2 is a Clifford torus in E^4 .

PROOF (SKETCH). The proof of (6) follows from a direct computation of the first curvature of second kind, $\lambda_1(p)$, (for the definition,

see [1]) and the relations between the mean curvature and λ_1 . If the equality of (6) holds, then we can prove that M^2 is a minimal surface of a 3-sphere in E^4 . From this we see that M^2 is a Clifford torus in E^4 . The converse of this is trivial.

For each unit normal vector e to $x(M^n)$ at x(p), let h_e be the linear transformation from the tangent space $T_p(M)$ into itself defined by

(7)
$$\langle h_{\mathbf{e}}(\mathbf{u}), \mathbf{v} \rangle = \langle h(\mathbf{u}, \mathbf{v}), \mathbf{e} \rangle$$

for all tangent vectors u, v at p. Let $K(p, e) = \det(h_e)$. Then K(p, e) is called the Lipschitz-Killing curvature at (p, e). By deriving some integral formulas for the α th curvatures of first and second kinds (for the definitions, see [1]), we can prove

THEOREM III. Let M^2 be an oriented closed surface in E^m . If M^2 is contained in a hypersphere of E^m , then M^2 is a pseudo-umbilical surface of E^m when and only when the Lipschitz-Killing curvature in the unit direction of the mean curvature vector \mathbf{H} is maximal over the fibre of the unit normal bundle B_v , $B_v = \{(p, \mathbf{e}) : p \in M^2, \mathbf{e} \text{ a unit normal vector in } E^m \text{ at } x(p) \}$.

THEOREM IV (ADDED IN PROOF). The Veronese surface in E^5 , the generalized Clifford tori in E^{n+2} and the n-sphere in E^{n+p} are the only closed pseudo-umbilical submanifolds M^n of E^{n+p} with mean curvature vector nowhere zero satisfying

(8)
$$R \ge \frac{n(p-1)\langle H, H \rangle}{2p-3} \left[(n-1) \left(\frac{2p-3}{p-1} \right) - 1 \right]$$

where R denotes the scalar curvature of M^n .

The proof of this theorem will appear in a forthcoming paper "Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature. II".

References

- 1. B.-y. Chen, On an inequality of T. J. Willmore, Proc. Amer. Math. Soc. 26 (1970), 473-479.
- 2. ——, On an inequality of mean curvatures of higher degree, Bull. Amer. Math. Soc. 77 (1971), 157-159.
- 3. ——, On the total curvature of immersed manifolds. I. An inequality of Fenchel-Borsuk-Willmore, Amer. J. Math. 93 (1971), 148-162.
- 4. ——, On the total curvature of immersed manifolds. II. Mean curvature and length of second fundamental form (to appear).
- 5. K. Yano and B.-y. Chen, Minimal submanifolds of a higher dimensional sphere, Tensor (to appear).

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823