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SUBSTITUTION MINIMAL FLOWS1 
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We investigate the structure of a certain class of minimal symbolic 
flows (substitution minimal flows) which are natural generalizations 
of the widely studied Morse minimal set (see, for example, [3], [5]). 
We present here a brief description of the major results; detailed 
proofs will appear elsewhere. The author wishes to thank William 
Veech for his help in the preparation of this paper. 

Let S = {0, 1, • • • , b - l } , and for n è 1, let Sn = {ƒ: 
{0, 1, • • • , n — l } —>S}. If -4£SW , we represent A as ao • • • an-i, 
where di = A(i); we refer to A as an w-block (over 5) . For - 4 £ S n , 
BESm, we let AB^a^ax • • • an-i&i&a • • • 6w_i, so that AB£Sn+m. 
A substitution 0 (=ô1) of length r over 5 is a map 0:S—»5r with 
0(O)(O)=O. For ]feè2, if 0(j)=Goai • • • ar-i, we define 0k(j)=6k-l(ao) 

. . . 0*-i(ar_i). We define a sequence x[ over 5 by letting the r*-block 
Xe(0)xe(l) • • • Xô(r* — 1) be 0*(O), for each feel. 0 is an admissible 
substitution if 0 is one-to-one, range x'6 = S, and x'd is a recurrent, 
nonperiodic sequence. (It is not difficult to prescribe simple condi­
tions which ensure that 0 is admissible.) 0 is simple, if for i, j £ S 
( i ^ j ) , 6(i)(n)7*6{j)(n) (O^n^r — 1). If 0 is an admissible substitu­
tion, we choose any recurrent extension x$ of x'e to the integers, and 
we define Xe = (Xe, T) to be the flow whose phase space X$ is the 
orbit-closure of x$ under the left shift T, in the space of all doubly 
infinite sequences over 5 (with the product topology). Xe is an in­
finite, compact metric space, and Xe is a minimal flow. Finally, we 
obtain a positive integer m(d) with gcd(m(0), r) = 1 so that «S is par­
titioned into nonempty sets So, Si, • • • , 5m(*)-i, and if i £ S n ( o (iÇzS), 
the sequence of integers n(xe(j)) ( i ^O, 1, • • • ) is periodic of period 
m(6). 

If 0 is a fixed admissible substitution of length r over S, our 
principal results may be stated as follows. Some of our results 
generalize certain results in [ l ] and [4]. (All definitions are as in 
[10]-) 
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THEOREM 1. Xe is a point-distal flow with a residual set of distal 
points. 

THEOREM 2. Let 2 be the equicontinuous structure relation on Xe. 
Then 9Ce/S is isomorphic to the equicontinuous flow (Zm(ô)XZr, T), 
where Zmm is the cyclic group of order m(0), Zr is the r-adic completion 
of the integers, and T is the homeomorphism determined by addition of 
the group element (1, 1). 

COROLLARY. If 0 is a binary substitution, 9Ce/S = (Zr, T). 

THEOREM 3. Xe is an almost automorphic flow if and only if there 
exist integers i, j , k (0^i^m(0) — 1, j^l, O^k^r'—l) with Oj(p)(k) 
= 0'(q)(k) for p, qGSi. 

In [8], Veech represents the Morse flow (the substitution flow 
generated by the binary substitution 0(0) = 0 1 , 0(1) = 10) as an 
isometric extension of an almost automorphic extension of (Z2, T). 
This may be generalized in the following manner. We define P« = 
{xe(j)xe(j+l):j = 0,l, - • - }CS';Aijk^{O^(p)(k)0^(p)(k + l):peSi\ 
CPe (0^i^m(0)-l,j = l, 0^kSr>'-2). 

THEOREM 4. If 0 is simple, Xe is an AI extension (i.e., an isometric 
extension of an almost automorphic extension) of an equicontinuous flow 
if and only if the collection {A #&} is a partition of P$. 

I t can easily be seen that this condition holds automatically for 
every simple binary substitution. We obtain 

THEOREM 5. If 0 is a binary substitution of length r, Xe is either an 
almost automorphic flow or an AI extension of the equicontinuous flow 
(z\ T). 

THEOREM 6. If 0 is simple, and r and b are both prime, Xe is an AI 
flow if and only if the collection {A w} is a partition of Pe. 

By Theorem 6, we obtain a class of point-distal flows with a re­
sidual set of distal points which are not AI flows. This is significant 
in the light of Veech's structure theorem for point-distal flows [10], 
according to which every point-distal flow with a residual set of 
distal points has an almost automorphic extension which is an AI 
flow. (Leonard Shapiro, in [6], has constructed examples, of a differ­
ent sort, of point-distal, non-AI flows.) 

EXAMPLE. Let b = r = 3; 0(0) =011 , 0(1) = 202, 0(2) = 120. I t can be 

easily verified that 0 is admissible and simple and that m(0) = 1. We 
have A010r\A 011= {20}, and thus, by Theorem 6, Xe is not an AI 
flow. 
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We remark that for substitutions of nonconstant length (i.e., if 
the blocks 0(0), 0(1), • • • , d(b—-1) are not of the same length), the 
situation is substantially different. Xe is no longer point-distal in 
general, and for certain 0, 9Ce can be shown to be weakly mixing. We 
hope to discuss this at greater length in a later paper. 
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