MORE DISTANT THAN THE ANTIPODES

BY J. J. SCHÄFFER ${ }^{1}$

Communicated by Victor Klee, February 12, 1971

1. Introduction. Let X be a real normed linear space, and let $\Sigma(X)$ be its unit ball, with the boundary $\partial \Sigma(X)$. If $\operatorname{dim} X \geqq 2, \delta_{X}$ denotes the inner metric of $\partial \Sigma(X)$ induced by the norm (cf. [1, §3]). If no confusion is likely, we write $\Sigma, \partial \Sigma$, δ. In [1] we introduced and discussed parameters of X based on the metric structure of $\partial \Sigma$; among them are $D(X)=\sup \{\delta(p, q): p, q \in \partial \Sigma\}$, the inner diameter of $\partial \Sigma$, and $M(X)=\sup \{\delta(-p, p): p \in \partial \Sigma\}$, half the perimeter of Σ. Obviously, $M(X) \leqq D(X)$, and it was conjectured [1, Conjecture 9.1] that $M(X)=D(X)$ in every case, i.e., that "no pair of points of $\partial \Sigma$ is more distant in $\partial \Sigma$ than the most distant antipodes." This equality was shown to hold if $\operatorname{dim} X=2$ or $\operatorname{dim} X=3$ [1, Theorems 5.4, 5.8], if $D(X)=4$ [3], if X is an L-space [4].

In this paper we explode this conjecture by showing that $M(X)=2$, $D(X)=3$ for $X=C_{0}((0,1])$, the space of continuous real-valued functions on (0,1] that tend to 0 at 0 , with the supremum norm. We observe that this failure of the conjecture is "as strong as possible," since $2 D(X) \leqq M(X)+4$ for every normed space X [3, Theorem 1]. The present result is a simple specific instance of the evaluation of $M(X), D(X)$ for many spaces of continuous functions, which will be carried out in a forthcoming paper. It has appeared useful, however, to give a separate account of this very simple example. In addition, Lemma 1 is required for the general theory. The conjecture remains unresolved, and interesting, for spaces of finite dimension greater than three.

We shall use the terminology, notations, and elementary results of $\S \S 1-3$ of [1]. In particular, a subspace of X is a linear manifold in X, not necessarily closed, provided with the norm of X. If Y is a subspace of X, we obviously have

$$
\begin{equation*}
\delta_{Y}(p, q) \geqq \delta(p, q), \quad p, q \in \partial \Sigma(Y) \tag{1}
\end{equation*}
$$

Instead of dealing with the space $C_{0}((0,1])$, we prefer, for technical reasons, to consider the space $C_{\pi}([-1,1])$ of odd continuous realvalued functions on $[-1,1]$ with the supremum norm. The two

[^0]spaces are obviously congruent, and therefore any metrical property of one implies the same metrical property of the other. In the rest of this paper, X shall always stand for $C_{\pi}([-1,1])$.
2. The perimeter. We consider the special function $u \in X$ defined by $u(t)=t, t \in[-1,1]$.

Lemma 1. $\delta(-u, u)=2$.
Proof. For each given integer $n>1$, let $R_{n}=l^{\infty}(\{1, \cdots, n\})$ be the Banach space of sequences of length n of real numbers, with the maximum norm. The proof will depend on the computation of the length of certain polygonal curves in $\partial \Sigma\left(R_{n}\right)$, carried out in [2].

Let Y_{n} be the closed subspace of X consisting of the piecewise linear odd continuous real-valued functions on $[-1,1]$ with "corners" at most at $\pm(2 k-1)(2 n-1)^{-1}, k=1, \cdots, n$. Define the linear mapping $\Phi_{n}: Y_{n} \rightarrow R_{n}$ by $\left(\Phi_{n} f\right)(j)=f\left((2 n-4 j+3)(2 n-1)^{-1}\right), j=1, \cdots$, n. Since the mapping $j \mapsto 2 n-4 j+3:\{1, \cdots, \quad n\} \rightarrow\{ \pm(2 k-1)$: $k=1, \cdots, n\}$ is injective and the image contains exactly one of each pair of opposites, Φ_{n} is bijective; since a piecewise linear function attains its extrema at "corners," Φ_{n} is isometric. Hence Φ_{n} is a congruence.

Now $u \in Y_{n}$; we consider $\Phi_{n} u \in \partial \Sigma\left(R_{n}\right)$ and compute

$$
\begin{equation*}
\left(\Phi_{n} u\right)(j)=(2 n-4 j+3)(2 n-1)^{-1}, \quad j=1, \cdots, n \tag{2}
\end{equation*}
$$

On the other hand, we consider $p_{0} \in \partial \Sigma\left(R_{n}\right)$ given by

$$
\begin{equation*}
p_{0}(j)=(n-2 j+1)(n-1)^{-1}, \quad j=1, \cdots, n \tag{3}
\end{equation*}
$$

we know from [2, Lemma 4] that

$$
\begin{equation*}
\delta_{R_{n}}\left(-p_{0}, p_{0}\right) \leqq 2 n(n-1)^{-1} \tag{4}
\end{equation*}
$$

(in fact, equality holds). Now $\left(\Phi_{n} u\right)(1)=p_{0}(1)=1$, so the straight-line segment with endpoints $\Phi_{n} u, p_{0}$ lies entirely in $\partial \Sigma\left(R_{n}\right)$; therefore, from (2), (3),

$$
\begin{align*}
\delta\left(p_{0}, \Phi_{n} u\right) & =\left\|\Phi_{n} u-p_{0}\right\| \\
& =2(2 n-1)^{-1}(n-1)^{-1} \max \{j-1: j=1, \cdots, n\} \tag{5}\\
& =2(2 n-1)^{-1} .
\end{align*}
$$

Since $\Phi_{n}: Y_{n} \rightarrow R_{n}$ is a congruence, (1), (4), (5) yield

$$
\begin{aligned}
2 & =\|u-(-u)\| \leqq \delta(-u, u) \leqq \delta_{Y_{n}}(-u, u)=\delta_{R_{n}}\left(-\Phi_{n} u, \Phi_{n} u\right) \\
& \leqq \delta_{R_{n}}\left(-\Phi_{n} u,-p_{0}\right)+\delta_{R_{n}}\left(-p_{0}, p_{0}\right)+\delta_{R_{n}}\left(p_{0}, \Phi_{n} u\right) \\
& \leqq 4(2 n-1)^{-1}+2 n(n-1)^{-1}=2+2(4 n-3)(n-1)^{-1}(2 n-1)^{-1}
\end{aligned}
$$

The integer n was arbitrarily great; we conclude that $\delta(u,-u)=2$.
Theorem 2. For every $f \in \partial \Sigma, \delta(-f, f)=2$. Consequently, $M(X)=2$.
Proof. Since $[-1,1]$ is connected and f is odd, we have $f([-1,1])$ $=[-1,1]$. Since the composition of odd functions is odd, we conclude that the linear mapping $g \mapsto g \circ f: X \rightarrow X$ is isometric, hence a congruence of X onto a subspace Y of X. Now ($\pm u$) $\circ f= \pm f \in Y$; by Lemma 1 and (1) we therefore have

$$
2 \leqq \delta(-f, f) \leqq \delta_{Y}(-f, f)=\delta_{Y}(-u \circ f, u \circ f)=\delta(-u, u)=2
$$

3. The inner diameter.

Lemma 3. Define $v, w \in \partial \Sigma b y$

$$
\begin{aligned}
v(t) & =-v(-t)=t-\frac{1}{2}+\left|t-\frac{1}{2}\right|, & & 0 \leqq t \leqq 1, \\
w(t) & =-w(-t)=-t-\frac{1}{2}+\left|t-\frac{1}{2}\right|, & & 0 \leqq t \leqq 1 .
\end{aligned}
$$

Then $\delta(v, w) \geqq 3$.
Proof. Let c be any curve from v to w in $\partial \Sigma$, and r a given number, $0 \leqq r<1$. Since $\|v-v\|=0,\|v-w\|=2$, there exists a point z on c such that $\|z-v\|=r$. Since $z \in \partial \Sigma$ there exists $t \in[-1,1]$ such that $z(t)=1$. Now $v(t) \geqq z(t)-\|z-v\|=1-r>0$. From the definition of v and w we have $t>\frac{1}{2}$, whence $w(t)=-1$. Then

$$
l(c) \geqq\|w-z\|+\|z-v\| \geqq|w(t)-z(t)|+r=2+r .
$$

Since r was arbitrarily close to 1 , we have $l(c) \geqq 3$. Since c was an arbitrary curve from v to w in $\partial \Sigma$, we indeed have $\delta(v, w) \geqq 3$.

Remark. It is easy to show directly that $\delta(v, w)=3$; there exists, in fact, a curve from v to w in $\partial \Sigma$ consisting of two straight line segments end-to-end, of respective lengths 1 and 2 : the intermediate endpoint is $z \in \partial \Sigma$ defined by

$$
z(t)=-z(-t)=t-\frac{3}{2}+3\left|t-\frac{1}{2}\right|, \quad 0 \leqq t \leqq 1
$$

The verification is left to the reader.
Theorem 4. $D(X)=3$.
Proof. By [3, Theorem 1], $2 D(X) \leqq M(X)+4$; since $M(X)=2$ by Theorem 2, we conclude, using Lemma 3, that

$$
3 \leqq \delta(v, w) \leqq D(X) \leqq \frac{1}{2}(2+4)=3
$$

so that equality holds.

References

1. J. J. Schăffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79. MR 36 \#1959.
2. ——, Addendum: Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 79-82. MR 36 \#1959.
3. ——, Spheres with maximum inner diameter, Math. Ann. 190 (1971), 242-247.
4. -, On the geometry of spheres in L-spaces, Israel J. Math. (to appear).

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

[^0]: AMS 1970 subject classifications. Primary 52A40; Secondary 46E15.
 Key words and phrases. Inner metric on unit sphere, inner diameter, perimeter.
 ${ }^{1}$ This work was supported in part by NSF Grant GP-19126.

