ENDOMORPHISMS OF EXACT SEQUENCES¹

BY IRWIN S. PRESSMAN

Communicated by I. N. Herstein, September 3, 1970

Let E and F denote the following exact sequences

$$E: 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$
 $F: 0 \to A \xrightarrow{f} B \xrightarrow{hg} D \xrightarrow{j} E \to 0$

where hg represents the canonical factorization of the middle morphism of F into an epimorphism g followed by a monomorphism g. We shall take the term "endomorphism" of g or g to mean a commutative diagram of the form

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \qquad 0 \to A \xrightarrow{f} B \xrightarrow{hg} D \xrightarrow{j} E \to 0$$

$$1 \left\| \begin{array}{ccc} & \downarrow \alpha & \parallel 1 & \text{or} & 1 \right\| & \downarrow \beta & \downarrow \gamma & \parallel 1 \\ 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 & 0 \to A \xrightarrow{f} B \xrightarrow{hg} D \xrightarrow{j} E \to 0.$$

We shall compute the "endomorphism groups" of E and F and prove that $\operatorname{Aut}(E) = \operatorname{End}(E) \cong \operatorname{Hom}(C, A)$ and that $\operatorname{End}(F) \cong \operatorname{Hom}(h, g)$ where the second Hom is a functor on a category of morphisms with range the category of semigroups.

1. Notation. Let R denote a fixed ring with unit and \mathfrak{M} the category of left R-modules. Let \mathcal{E} denote the category of all short-exact sequences E, which begin with A and end with C, and whose morphisms are all triples $(1, \theta, 1) = \theta^{\#}$ which induce commutative diagrams

$$E: \ 0 \to A \to B \to C \to 0$$

$$\theta^{\#} \downarrow \qquad \left\| 1 \quad \downarrow \theta \quad \right\| 1$$

$$E': \ 0 \to A \to B' \to C \to 0.$$

By the 5-lemma, θ is an isomorphism, and thus θ^{\sharp} is one too. Thus every endomorphism of E is an "automorphism."

AMS 1970 subject classifications. Primary 13D15, 18G15.

Key words and phrases. Endomorphism, exact sequence, automorphism, automorphism group, semigroup, isomorphism.

¹ This research was partially supported by NSF grant GP-9631.

The category \mathfrak{F} of all sequences of length two beginning with A and ending at E can be similarly defined. Not all morphisms of \mathfrak{F} need be isomorphisms however.

Let \mathfrak{M}^2 denote the abelian category whose objects are all the morphisms of \mathfrak{M} , and whose morphisms are all pairs $\binom{\rho}{\sigma}:h{\longrightarrow}g$ which give rise to commutative squares



One should note that there is no way of adding endomorphisms in \mathcal{E} and \mathcal{F} ; one may only compose them with each other.

2. Computation of $Aut_{\varepsilon}(E)$.

THEOREM 1. Aut₈(E) \cong Hom_M(C, A).

PROOF. Let $\alpha^{\sharp} = (1, \alpha, 1) : E \rightarrow E$. Set $\alpha - 1 = \lambda$ or $\alpha = 1 + \lambda$. Since $\alpha f = f$, $(1 + \lambda)f = f + \lambda f = f$, so $\lambda f = 0$. Therefore there is a unique morphism $\mu: C \rightarrow B$ such that $\lambda = \mu g$; so $\alpha = 1 + \mu g$. But $g\alpha = g$ implies $g(1 + \mu g) = g + g\mu g = g$, so $g\mu g = 0$. But g is an epimorphism, so $g\mu = 0$. Therefore there is a unique morphism $\nu: C \rightarrow A$ such that $\mu = f\nu$. It follows that $\alpha = 1 + f\nu g$. Moreover, ν is unique because if $\alpha = 1 + f\nu g = 1 + f\nu''g$ then $f\nu g = f\nu''g$; but f is a monomorphism, so $\nu g = \nu''g$; similarly g is an epimorphism, so $\nu = \nu''$.

This construction produces a unique mapping

$$\Phi \colon \operatorname{Aut}_{\varepsilon}(E) \to \operatorname{Hom}(C, A)$$

where $\Phi(\alpha^{\#}) = \nu$. The former is a multiplicative group, the latter an additive abelian group. We must prove that Φ is an isomorphism of groups.

If $\rho: C \to A$ is any morphism of $\operatorname{Hom}(C, A)$, then $(1+f\rho g)^{\#} = (1, 1+f\rho g, 1)$ is an automorphism of E because it clearly gives rise to an appropriate commutative diagram. Hence it follows that $\Phi((1+f\rho g)^{\#}) = \rho$, so Φ is onto.

If $\Phi(\alpha^{\#}) = \Phi(\alpha_1^{\#}) = \nu$, then $\alpha = 1 + f\nu g = \alpha_1$, so $\alpha_1^{\#} = \alpha^{\#}$. Therefore Φ must be a one-to-one mapping.

If $\alpha = 1$ then 1# is the identity morphism on E in \mathcal{E} , and $\Phi(1^{\#}) = 0$. Certainly $\alpha^{-1} = 1 - f \nu g$.

Notice that $(1+f\eta g)(1+f\rho g) = 1+f\eta g+f\rho g = 1+f(\eta+\rho)g$. Therefore, if $\alpha = 1+f\eta g$ and $\alpha' = 1+f\rho g$, then $\Phi(\alpha^{\sharp}\alpha'^{\sharp}) = \eta+\rho = \Phi(\alpha^{\sharp})$

 $+\Phi(\alpha'^{\sharp})$. Therefore Φ is a homomorphism of groups, and in fact an isomorphism.

It is interesting to note that these automorphism groups are abelian, and are independent of the extension class of E.

COROLLARY. Aut₈(E) is isomorphic to a (commutative) subgroup of $Aut_{\mathfrak{M}}(B)$.

There is a subgroup of $\operatorname{Aut}_{\mathfrak{M}}(B)$ of this type for each submodule A' of B, where the short exact sequence would be $0 \to A' \to B \to B/A' \to 0$. If $\operatorname{Aut}_{\mathfrak{M}}(B)$ is the direct limit of the $\operatorname{Aut}_{\mathfrak{E}}(E)$ groups, then it would have to be abelian.

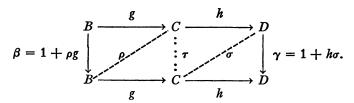
In a following paper, Theorem 1 will be used to prove that the Whitehead group of \mathcal{E} is Hom(C, A).

3. Computation of $\operatorname{End}_{\mathfrak{F}}(F)$. By the same argument as was used in Theorem 1, if $(1, \beta, \gamma, 1): F \to F$ is an endomorphism of F, then there is a unique morphism $\rho: C \to B$ such that $\beta = 1 + \rho g$ and a unique morphism $\sigma: D \to C$ such that $\gamma = 1 + h\sigma$.

There are two endomorphisms $C \rightarrow C$ produced by this, $g\rho$ and σh . One has

$$h(1 + \sigma h)g = hg + h\sigma hg = (1 + h\sigma)hg = \gamma hg$$
$$= hg\beta = hg(1 + \rho g) = hg + hg\rho g.$$

Therefore $hg\rho g = h\sigma hg$, and since g is an epimorphism and h is a monomorphism, $g\rho = \sigma h$.



Therefore there is induced a unique morphism $\tau = 1 + g\rho = 1 + \sigma h$: $C \rightarrow C$ such that $\tau g = g\beta$ and $h\tau = \gamma h$. Also, there is a commutative diagram

$$h \downarrow \xrightarrow{\rho} g, \qquad \binom{\rho}{\sigma} : h \to g,$$

corresponding to a morphism in the category M2.

If we define a multiplication on $Hom_{\mathfrak{M}^2}(h, g)$ by setting

$$\binom{\rho}{\sigma} \binom{\rho'}{\sigma'} = \binom{\rho + \rho' + \rho g \rho'}{\sigma + \sigma' + \sigma h \sigma'},$$

then it is easily checked that this is associative and that $\binom{0}{0}$ is a unit with respect to this multiplication. Therefore, using the same techniques as in Theorem 1, one proves

THEOREM 2. There is an isomorphism of semigroups

$$\operatorname{End}_{\mathfrak{F}}(F) \cong \operatorname{Hom}_{\mathfrak{M}^2}(h, g).$$

It would be very interesting if one could give some way of deciding which endomorphisms are automorphisms. An equivalent problem is to determine when $g\rho$ is quasi-regular in $\operatorname{Aut}_{\mathfrak{M}}(C)$.

REFERENCES

- 1. S. Mac Lane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
 - 2. I. S. Pressman, The Baer sum functor and algebraic K-theory (to appear).
 - 3. ——, Whitehead groups of the category of short exact sequences (in prep.).

Ohio State University, Columbus, Ohio 43210