EXTENSION THEORY FOR CONNECTED HOPF ALGEBRAS

BY WILLIAM M. SINGER

Communicated by Michael Artin, April 3, 1970

1. Introduction. Let K be a fixed commutative ring with unit. We will deal with graded algebras, coalgebras, and Hopf algebras over K as defined in Milnor-Moore [4], but we assume that the underlying K-modules are connected.

Suppose A, B are Hopf algebras; A commutative and B cocommutative. By an extension of B by A we mean a diagram of Hopf algebras and Hopf maps

$$(1.1) A \xrightarrow{\alpha} C \xrightarrow{\beta} B$$

in which C is isomorphic to $A \otimes B$ simultaneously as a left A-module and right B-comodule. In this paper we announce results which describe and classify all extensions by B by A. Proofs will appear in [5].

2. Matched pairs. If B is an algebra we write

$$\eta: K \to B, \quad \mu_B: B \otimes B \to B$$

for the unit and multiplication, respectively. If A is a coalgebra we write

$$\epsilon: A \to K, \quad \psi_A: A \to A \otimes A$$

for the counit and comultiplication.

As the first step in classifying extensions, we will show in [5] how a diagram (1.1) determines a pair of K-linear maps

$$\sigma_A: B \otimes A \to A, \quad \rho_B: B \to A.$$

 σ_A is the "action" of base on fiber that one expects in an extension problem; ρ_B is its dual. We prove:

- (a) σ_A gives A the structure of a left B-module algebra;
- (b) ρ_B gives B the structure of a right A-comodule coalgebra;
- (c) the diagram commutes:

AMS 1969 subject classifications. Primary 1680, 1820; Secondary 5534.

Key words and phrases. Algebra, coalgebra, Hopf algebra, extensions of Hopf algebras, triples, cotriples.

$$B \otimes A \xrightarrow{\sigma_A} A \xrightarrow{\psi_A} A \otimes A$$

$$\downarrow \psi_B \otimes \psi_A$$

$$B \otimes B \otimes A \otimes A$$

$$\downarrow \rho_B \otimes B \otimes A \otimes A$$

$$A \otimes \mu_A$$

$$B \otimes A \otimes B \otimes A \otimes A$$

$$\downarrow (1, 4, 2, 3, 5)$$

$$B \otimes A \otimes A \otimes B \otimes A \xrightarrow{\sigma_A \otimes A \otimes \sigma_A} A \otimes A \otimes A$$

(d) the diagram commutes:

Conversely, suppose given a pair of Hopf algebras (A, B) with A commutative and B cocommutative, and suppose given K-linear maps σ_A , ρ_B satisfying conditions (a)-(d). Then we call (A, B) a "matched pair".

3. Bimodules over a matched pair. Suppose (A, B) is a matched pair. Suppose N is simultaneously a left B-module under $\sigma_N: B \otimes N \to N$, and a right A-comodule under

$$\rho_N: N \to N \otimes A$$
.

Then we call N an (A, B)-bimodule if the diagram commutes:

$$B \otimes N \xrightarrow{\sigma_{N}} N \xrightarrow{\rho_{N}} N \otimes A$$

$$\downarrow \psi_{B} \otimes N$$

$$B \otimes B \otimes N$$

$$\downarrow \rho_{B} \otimes B \otimes \rho_{N}$$

$$B \otimes A \otimes B \otimes N \otimes A$$

$$\downarrow (1, 4, 2, 3, 5)$$

$$\downarrow B \otimes N \otimes A \otimes B \otimes A \xrightarrow{\sigma_{N} \otimes A \otimes \sigma_{A}} N \otimes A \otimes A$$
For example, if (A, B) is a matched pair we can give A the atrix

For example, if (A, B) is a matched pair we can give A the structure of an (A, B)-bimodule, with left B-action $\sigma_A : B \otimes A \to A$, and right A-coaction $\psi_A : A \to A \otimes A$. A dual construction makes B into an (A, B)-bimodule. We say $f : M \to N$ is a map of (A, B)-bimodules if f is simultaneously a map of left B-modules and right A-comodules.

The interpretation of diagrams (2.1), (2.2), (3.1) is found in:

THEOREM 3.1. Let N be a bimodule over the matched pair (A, B). Let the map $\tilde{\sigma}_{N \otimes A} \colon B \otimes N \otimes A \to N \otimes A$ be the composition

$$(N \otimes \mu_A)(\sigma_N \otimes A \otimes \sigma_A)(1, 4, 2, 3, 5)(\rho_B \otimes B \otimes N \otimes A)(\psi_B \otimes N \otimes A).$$

Let the map $\tilde{\rho}_{N \otimes A}: N \otimes A \to N \otimes A \otimes A$ be $N \otimes \psi_A$. Then:

- (a) $\tilde{\sigma}_{N \otimes A}$ gives $N \otimes A$ the structure of a left B-module;
- (b) $\tilde{\rho}_{N \otimes A}$ gives $N \otimes A$ the structure of a right A-comodule;
- (c) with these structure maps $N \otimes A$ is in fact an (A, B) bimodule which we denote $N \widetilde{\otimes} A$;
 - (d) $\rho_N: N \to N \tilde{\otimes} A$ is a map of (A, B)-bimodules.

Theorem 3.1 has a dual. Given an (A, B)-bimodule M, Theorem $(3.1)^*$ tells how to give $B \otimes M$ the structure of an (A, B)-bimodule, denoted $B \otimes M$, in such a way that $\sigma_M : B \otimes M \to M$ is a map of (A, B)-bimodules.

4. (A, B)-algebras and (A, B)-coalgebras. By an (A, B)-algebra we mean an (A, B)-bimodule N that is also a commutative algebra, in such a way that $\mu_N \colon N \otimes N \to N$ is both a map of left B-modules and right A-comodules. (A, B)-coalgebras are defined similarly. For example if (A, B) is a matched pair, then A itself is an (A, B)-algebra, and B is an (A, B)-coalgebra.

THEOREM 4.1. Let N be an (A, B)-algebra. Let $N \otimes A$ have the algebra structure of the tensor product $N \otimes A$. Then $N \otimes A$ is an (A, B)-algebra, and $\rho_N \colon N \to N \otimes A$ is a map of (A, B)-algebras.

Theorem 4.1 can be interpreted in the language of "triples" [1], [2]. Let Γ be the category of (A, B)-algebras. Let $S: \Gamma \to \Gamma$ be the functor which carries N to $N \otimes A$, and let $I: \Gamma \to \Gamma$ be the identity functor. Define functor transforms $\delta: I \to S$, $\sigma: S^2 \to S$ by

$$\delta(N) = \rho_N : N \to N \widetilde{\otimes} A; \quad \sigma(N) = N \otimes \epsilon \otimes A : N \widetilde{\otimes} A \widetilde{\otimes} A \to N \widetilde{\otimes} A.$$

Then $V \equiv (S, \delta, \sigma)$ is a triple on the category Γ .

Similarly, the dual of Theorem 4.1 gives a cotriple $W \equiv (T, d, s)$ on the category Δ of (A, B)-coalgebras. Here $T(M) = B \otimes M$, $d(M) = \sigma_M : B \otimes M \to M$, and $S(M) = B \otimes \eta \otimes M : B \otimes M \to B \otimes B \otimes M$.

5. The cohomology of matched pairs. If ϕ is any category, write $S^*(\phi)$ for the category of cosimplicial objects over ϕ , and $S_*(\phi)$ for the category of simplicial objects over ϕ . Then the triple V of §4 gives rise in the usual way [1], [2] to a functor $V: \Gamma \rightarrow S^*\Gamma$; the cotriple W gives rise to a functor $W: \Delta \rightarrow S_*\Delta$. For example, if (A, B) is a matched pair, then V(K) is the acyclic cobar construction on A, but it has some structure not present in the classical case . . . an action of B compatible with the coface operators. Similarly, W(K) is the acyclic bar construction on B, with an A-coaction added.

If M is an (A, B)-coalgebra and N an (A, B)-algebra, let $\operatorname{Hom}_{(A,B)}(M,N)$ denote the set of maps of (A,B)-modules $f\colon M\to N$ for which $f_0\colon M_0\to N_0$ is the identity on K. Then $\operatorname{Hom}_{(A,B)}(M,N)$ is an abelian group under the composition law $f+g=\mu_N(f\otimes g)\psi_M$.

Now to any matched pair (A, B) we associate a double cosimplicial abelian group X(B, A) by setting:

(5.1)
$$X^{p,q}(B, A) = \operatorname{Hom}_{(A,B)} (W(K)_p, V(K)^q).$$

Let $\overline{X}(B, A)$ be the associated "total" cochain complex. Then we define the cohomology of the matched pair (A, B) by:

$$(5.2) H^*(B, A) = H^*(\overline{X}(B, A)).$$

6. Classification of extensions. Let (A, B) be a matched pair under (σ_A, ρ_B) . Denote by Opext(B, A) the set of equivalence classes of extensions (1.1) which give rise to the given "matching." Our main result is:

THEOREM 6.1. There is a natural isomorphism:

$$H^3(B, A) = \text{Opext}(B, A).$$

7. Acknowledgments. The author's efforts have been sustained by

James Stasheff's interest and encouragement. He would like to thank Saunders Mac Lane for a timely letter advocating the use of triples. Finally the author must acknowledge the influence of Victor Gugenheim's paper [3], in which central extensions of Hopf algebras are described by a pair of twisting functions.

REFERENCES

- 1. M. Barr and J. Beck, Homology and standard constructions, Sem. on Triples and Categorical Homology Theory (ETH, Zurich, 1966/67) Springer, Berlin, 1969.
- 2. R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Indust., no. 1252 = Publ. Math. Univ. Strasbourg, no. 13, Hermann, Paris, 1958. MR 21 #1583.
- 3. V. K. A. M. Gugenheim, On extensions of algebras, co-algebras and Hopf algebras. I, Amer. J. Math. 84 (1962), 349-382. MR 26 #1340.
- 4. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math (2) 81 (1965), 211-264. MR 30 #4259.
- 5. W. Singer, Extension theory for connected Hopf algebras, Bull. Amer. Math. Soc. 76 (1970), 1095-1099.

BOSTON COLLEGE, CHESTNUT HILL, MASSACHUSETTS 02167