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The problem under consideration in this paper is that of uniformly 
approximating an arbitrary continuous function g on the closed unit 
disk D by continuous functions ƒ which are analytic in D~ {z com
plex: |z | < l } . In particular, we are concerned with the existence, 
uniqueness, and construction of a best approximation f0 to g. Our re
sults consist of a proof of the uniqueness of / 0 when it exists and an 
algorithm for constructing f0 for certain classes of functions g. Both 
results follow from a more general theorem on best uniform approxi
mations and annihilating measures. 

If E is a normed linear space, A is a subspace of E, and SA consists 
of all the linear functionals L on E with | |L | | ^ 1 and which vanish on 
A then, as a consequence of the Hahn-Banach theorem, the following 
relationship holds [ l ] . 

THEOREM 1. If g&E then 

| | g |U= i n f | | g - / | | = m a x | L ( g ) ( . 

For £ = C(K), the continuous complex valued functions defined on 
the compact Hausdorff space K, additional information can be ob
tained from Theorem 1 by applying the Riesz representation theorem 
[ 4 ] t o Z , e S l . H e r e I g\\ = max^Gic | g(z) | is the uniform norm. 

THEOREM 2. If gÇzC(K), foÇzA is a best uniform approximation to 
gf L £ S j , and L(g) =||g||A then g—/o = |klU$ #.£. d\x where cj)dfx is the 
polar decomposition of the unique regular Borel measure on K which 
represents L. 

PROOF. By Theorem 1, there is an L(ESA with £(g) = |k lU and 
Hill = 1 . Let (f)dfJL be the measure which represents L where | $ | = 1 
a.e. djut, d/x^O and /xd/x = l . Now, 

IUIU - f (g-M*** £ f I (*-ƒ*)* I «* s f Ik - /oi l* - HU. 
J K J K J K 
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Therefore, 

f (g - U)4>dn = f I (g - /o)* I <fo = U\A. 
J K J a 

Since j (g—/o)| =s||g|U we must have | g —f0\ = |klU on the support of 
dix. 

Then it follows that 

(g-/o)tf> = \\g\U &.e.dn 

and 

£ - /o = | |g|U?a.e. J/i 

which was to be proved. 
Let K = D, the closed unit disk, and let A consist of all functions 

in C(D) which are analytic in D. Then the support of the measure dix 
in Theorem 2 is large enough to ensure the uniqueness of / 0 when / 0 

exists. 

THEOREM 3. If foEiA is a best uniform approximation to gÇiC(D) 
then ƒ o is unique. 

PROOF. Suppose / 0 is not unique. Then there is an jfi£-4, fi^fo 
such that ||g—/o|| =||g—/i|| =| |g|U. Let cfrdixCzS^ be the measure in 
Theorem 2. Then / o = / i = g-- | ldU$ a.e. dfi and h=fi—fo = 0 on K, 
the support of fx. Therefore K(~\D can not have a limit point in D so 
KC\D is at most countable. 

One can now show that A is dense in L2(dfxt KC\D) and therefore 
<j>dii is the zero measure on KC\D. Then, by the F. and M. Riesz 
theorem [3], <$>d\x is absolutely continuous with respect to Lebesgue 
measure on dD. But / 0 = / i on D if KC\dD has positive Lebesgue 
measure [3]. Therefore, KC\dD has zero Lebesgue measure and 
gÇzA so that g=fo=fi which contradicts our assumption. 

We now demonstrate the existence of best approximations ƒ o in A 
to harmonic functions of the form g = X)?=o M ; + 1- The maximum 
modulus principle for harmonic functions implies that we may re
strict our attention to approximating g on dD by ƒ in A. The linear 
functionals that annihilate A on dD are of the form 

n 

•2*_ de 

2T 

where ƒ E if1, the Hardy space H1, i.e., ƒ is an L1 function on dD whose 
harmonic extension to D is analytic. We will simply write LQi) 

file:////g/U
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—fzhf (dd/lir) for the above integral. Theorem 1 then says 

(W(<»/2T) I/-(1) \\g\\A = max-
/em II/IIX 

However, ||g||A may be calculated by considering a much smaller 
class of linear functionals. 

LEMMA. If g = ]C?-o M / + 1 t n e n 

( / 2 , ^ ) | 
|g||A = max ƒ outer; ƒ G Pn (ƒ ,ƒ ) 

w/^re (/2, ëg) awd (ƒ, ƒ) are inner products in L2(^ö/2x, dJ9). 

PROOF. Rudin and de Leeuw have shown that iîfÇzH1 and ||/||i = 1 
then ƒ = | (/i+/2) where / i and ƒ2 are outer functions in H1 with L\-
norms = l [2]. Hence (1) reduces to 

I, H I ( A * I ) I 
||g||A = max foutenfGHi \\f\\i 

But ƒ being outer in H1 implies that f112 is outer in H2. Therefore, 

II II l ( / 2 ^ g ) [ 
\\g\\A = max — « 

ƒ outer; ƒ Gfl2 (ƒ ,ƒ ) 

Let P n denote the space of all polynomials in z of degree ^w and 
fn denote the L2(dd/2ir) projection of ƒ onto P„. Then 

l(A*f)| . \<jlM)\ 
(ƒ,ƒ) (ƒ»,ƒ») 

since the numerators are equal and (ƒ, ƒ) ^ (/n, / w ) . Since the in
equality is strict f o r / $ P W we have 

« U = m a x — 7 T ~ ^ — " 
ƒ outer; ƒ G Pn ( ƒ ,ƒ ) 

THEOREM 4. If g = X)?-o M / + 1 //^w J/^re is a rational function j0 iw 
-4 wfo'cA w /&£ unique best approximation to g. 

PROOF. Applying the lemma, there is an ƒ in PM, ƒ outer, with (ƒ, ƒ) 
= 1 and \\g\\A = ƒ zgf2 (dd/lir). The polar decomposition of the measure 
is (*ƒ/ƒ) l / l 2 (<W/2ir) where <}> = zf/f and d/i = | / | 2

 ( ^ / 2 T T ) . On ÖZ>, $ 
= zf/f has at most w discontinuities which are removable so let $ 
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denote the modification of zf/f which is continuous on dD. We claim 
that fo = g — ||g|U<5 is the unique best approximation to g from A. 

To show tha t /oE-4 consider a sequencefnE.A with ||g—/n||~>||g|U. 
Then by either a normal family argument on {/n} or a weak* com
pactness argument [2] there is an JGff08 with Hs -AlUHMU. Ap
plying the proof of Theorem 2 we have h=f0 a.e. dd on dD. Con
sequently both functions have the same analytic extension to D and 
hence foGA. 

Uniqueness of jf0 follows from Theorem 3 and the fact that / 0 is a 
rational function follows from our algorithm for calculating/0 which 
we describe next. 

Let g, ƒ, and f0 be as above where ƒ = ^ = 0 a>jZJ',p = | |g|U (ƒ> jO = !» 
and p = (/2, zg). Then (g —f0) zf/f = p a.e. dd or 

(2) zgf-zfof = pf on dD. 
The nonpositive Fourier coefficients in (2) satisfy the matrix 

equation 
(3) BF=pF where 

B 

'bo bi • 

i i • • 

Li» o -

• bn" 

bn 0 

• 0 . 

F = 

#o 

and F = 

A J 

From (3) can be derived 
(4) (BB-pH) F=0. 
The method for finding f0 consists of first finding the largest posi

tive eigenvalue p2 of BB and then solving (BB—p2I)X = 0 for a non-
trivial solution X=Fi. Then either Fi or (i)(BFi~-pFi) is a non-
trivial solution of BX=pX. Let F denote that nontrivial solution. 
Then ƒ is defined by F and f0 by /o = g—P £ƒ/ƒ on 3D. Choosing F so 
that (F, F)=l shows that p2 = ||g||i is the largest positive eigenvalue 
of BB since F is a solution to both (3) and (4) and since 
ƒ zgf2 (d0/2ir) = FtBF = p, where F* is the transpose of F. 

As an example of the preceding method consider g = 3z + 2z2. Then 

B 
T3 21 __ T13 61 

and BB = 
L2 OJ L 6 4 J 

D e t ( £ 3 - p 2 I ) = ( p 2 - 1 6 ) ( p 2 - l ) . Hence \\g\\A--
solution of (3). Therefore, let f=2+z. Then 

= 4. Now F=Ci) is a 

/o = g - 4<? = 
3z + 2 4 / l + 2s\ 

s2 \ 3 + 2 / 
on 3D. 
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Thus/o = 3/ (2+2) is the unique best approximation from A to g on D. 
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