BEST UNIFORM APPROXIMATIONS VIA ANNIHILATING MEASURES

BY WILLIAM HINTZMAN

Communicated by R. A. Kunze, March 5, 1970

The problem under consideration in this paper is that of uniformly approximating an arbitrary continuous function g on the closed unit disk \overline{D} by continuous functions f which are analytic in $D = \{z \text{ com$ $plex: } |z| < 1\}$. In particular, we are concerned with the existence, uniqueness, and construction of a best approximation f_0 to g. Our results consist of a proof of the uniqueness of f_0 when it exists and an algorithm for constructing f_0 for certain classes of functions g. Both results follow from a more general theorem on best uniform approximations and annihilating measures.

If E is a normed linear space, A is a subspace of E, and S_A^* consists of all the linear functionals L on E with $||L|| \leq 1$ and which vanish on A then, as a consequence of the Hahn-Banach theorem, the following relationship holds [1].

THEOREM 1. If $g \in E$ then $||g||_A = \inf_{f \in A} ||g - f|| = \max_{L \in S_A^*} |L(g)|$.

For E = C(K), the continuous complex valued functions defined on the compact Hausdorff space K, additional information can be obtained from Theorem 1 by applying the Riesz representation theorem [4] to $L \in S_A^*$. Here $||g|| = \max_{z \in K} |g(z)|$ is the uniform norm.

THEOREM 2. If $g \in C(K)$, $f_0 \in A$ is a best uniform approximation to $g, L \in S_A^*$, and $L(g) = ||g||_A$ then $g - f_0 = ||g||_A \overline{\phi}$ a.e. $d\mu$ where $\phi d\mu$ is the polar decomposition of the unique regular Borel measure on K which represents L.

PROOF. By Theorem 1, there is an $L \in S_A^*$ with $L(g) = ||g||_A$ and ||L|| = 1. Let $\phi d\mu$ be the measure which represents L where $|\phi| = 1$ a.e. $d\mu$, $d\mu \ge 0$ and $\int_K d\mu = 1$. Now,

$$\frac{\|g\|_{A}}{\int_{K}} (g - f_{0}) \phi d\mu \leq \int_{K} |(g - f_{0})\phi| d\mu \leq \int_{K} \|g - f_{0}\| d\mu = \|g\|_{A}.$$

AMS 1969 subject classifications. Primary 4130, 4140; Secondary 4215, 4625.

Key words and phrases. Best approximation, uniform norm, analytic functions, harmonic functions, linear functional, annihilating measure, extreme point.

Therefore,

$$\int_{K} (g - f_0) \phi d\mu = \int_{K} |(g - f_0) \phi| d\mu = ||g||_{A}$$

Since $|(g-f_0)| \leq ||g||_A$ we must have $|g-f_0| = ||g||_A$ on the support of $d\mu$.

Then it follows that

$$(g-f_0)\phi = ||g||_A$$
 a.e. $d\mu$

and

$$g-f_0=||g||_Aar{\phi}$$
 a.e. $d\mu$

which was to be proved.

Let $K = \overline{D}$, the closed unit disk, and let A consist of all functions in $C(\overline{D})$ which are analytic in D. Then the support of the measure $d\mu$ in Theorem 2 is large enough to ensure the uniqueness of f_0 when f_0 exists.

THEOREM 3. If $f_0 \in A$ is a best uniform approximation to $g \in C(\overline{D})$ then f_0 is unique.

PROOF. Suppose f_0 is not unique. Then there is an $f_1 \in A$, $f_1 \neq f_0$ such that $||g - f_0|| = ||g - f_1|| = ||g||_A$. Let $\phi d\mu \in S_A^*$ be the measure in Theorem 2. Then $f_0 = f_1 = g - ||g||_A \bar{\phi}$ a.e. $d\mu$ and $h = f_1 - f_0 = 0$ on K, the support of μ . Therefore $K \cap D$ can not have a limit point in D so $K \cap D$ is at most countable.

One can now show that A is dense in $L^2(d\mu, K \cap D)$ and therefore $\phi d\mu$ is the zero measure on $K \cap D$. Then, by the F. and M. Riesz theorem [3], $\phi d\mu$ is absolutely continuous with respect to Lebesgue measure on ∂D . But $f_0 = f_1$ on \overline{D} if $K \cap \partial D$ has positive Lebesgue measure [3]. Therefore, $K \cap \partial D$ has zero Lebesgue measure and $g \in A$ so that $g = f_0 = f_1$ which contradicts our assumption.

We now demonstrate the existence of best approximations f_0 in A to harmonic functions of the form $g = \sum_{j=0}^{n} b_j \bar{z}^{j+1}$. The maximum modulus principle for harmonic functions implies that we may restrict our attention to approximating g on ∂D by f in A. The linear functionals that annihilate A on ∂D are of the form

$$L(h) = \int_0^{2\pi} h(e^{i\theta}) e^{i\theta} f(e^{i\theta}) \frac{d\theta}{2\pi}$$

where $f \in H^1$, the Hardy space H^1 , i.e., f is an L^1 function on ∂D whose harmonic extension to D is analytic. We will simply write L(h)

 $=\int zhf (d\theta/2\pi)$ for the above integral. Theorem 1 then says

(1)
$$||g||_{A} = \max_{f \in H^{1}} \frac{\left| \int zgf(d\theta/2\pi) \right|}{||f||_{1}}.$$

However, $\|g\|_{A}$ may be calculated by considering a much smaller class of linear functionals.

LEMMA. If
$$g = \sum_{j=0}^{n} b_j \bar{z}^{j+1}$$
 then
$$\|g\|_A = \max_{f \text{ outer; } f \in P_n} \frac{|(f^2, \bar{z}\bar{g})|}{(f, f)}$$

where $(f^2, \bar{z}\bar{g})$ and (f, f) are inner products in $L^2(d\theta/2\pi, \partial D)$.

PROOF. Rudin and de Leeuw have shown that if $f \in H^1$ and $||f||_1 = 1$ then $f = \frac{1}{2}(f_1 + f_2)$ where f_1 and f_2 are outer functions in H^1 with L_1 -norms = 1 [2]. Hence (1) reduces to

$$||g||_A = \max_{f \text{ outer}; f \in H^1} \frac{|(f, \bar{z}\bar{g})|}{||f||_1}$$

But f being outer in H^1 implies that $f^{1/2}$ is outer in H^2 . Therefore,

 $||g||_{A} = \max_{f \text{ outer; } f \in H^{2}} \frac{|(f^{2}, \bar{z}\bar{g})|}{(f, f)}.$

Let P_n denote the space of all polynomials in z of degree $\leq n$ and f_n denote the $L^2(d\theta/2\pi)$ projection of f onto P_n . Then

$$\frac{\left|\left(f^{2}, \bar{z}\bar{g}\right)\right|}{(f, f)} \leq \frac{\left|\left(f^{2}_{n}, \bar{z}\bar{g}\right)\right|}{(f_{n}, f_{n})}$$

since the numerators are equal and $(f, f) \ge (f_n, f_n)$. Since the inequality is strict for $f \oplus P_n$ we have

$$\|g\|_{A} = \max_{f \text{ outer; } f \in P_{n}} \frac{\left| \left(f^{2}, \bar{z}\bar{g}\right)\right|}{(f, f)} .$$

THEOREM 4. If $g = \sum_{j=0}^{n} b_j \bar{z}^{j+1}$ then there is a rational function f_0 in A which is the unique best approximation to g.

PROOF. Applying the lemma, there is an f in P_n , f outer, with (f, f) = 1 and $||g||_A = \int zgf^2 (d\theta/2\pi)$. The polar decomposition of the measure is $(zf/\bar{f})|f|^2 (d\theta/2\pi)$ where $\phi = zf/\bar{f}$ and $d\mu = |f|^2 (d\theta/2\pi)$. On ∂D , $\bar{\phi} = \bar{z}\bar{f}/f$ has at most n discontinuities which are removable so let $\bar{\phi}$

denote the modification of $\overline{z}\overline{f}/f$ which is continuous on ∂D . We claim that $f_0 = g - ||g||_A \overline{\phi}$ is the unique best approximation to g from A.

To show that $f_0 \in A$ consider a sequence $f_n \in A$ with $||g - f_n|| \rightarrow ||g||_A$. Then by either a normal family argument on $\{f_n\}$ or a weak* compactness argument [2] there is an $h \in H^{\infty}$ with $||g - h||_{\infty} = ||g||_A$. Applying the proof of Theorem 2 we have $h = f_0$ a.e. $d\theta$ on ∂D . Consequently both functions have the same analytic extension to D and hence $f_0 \in A$.

Uniqueness of f_0 follows from Theorem 3 and the fact that f_0 is a rational function follows from our algorithm for calculating f_0 which we describe next.

Let g, f, and f_0 be as above where $f = \sum_{j=0}^{n} a_j z^j$, $\rho = ||g||_A$, (f, f) = 1, and $\rho = (f^2, \bar{z}\bar{g})$. Then $(g - f_0) zf/\bar{f} = \rho$ a.e. $d\theta$ or

(2) $zgf - zf_0 f = \rho \bar{f}$ on ∂D .

The nonpositive Fourier coefficients in (2) satisfy the matrix equation

(3) $BF = \rho \overline{F}$ where

$$B = \begin{bmatrix} b_0 & b_1 \cdot \cdot \cdot & b_n \\ b_1 & \cdot \cdot \cdot & b_n & 0 \\ \vdots & & \vdots \\ \vdots & & \vdots \\ b_n & 0 \cdot \cdot \cdot & 0 \end{bmatrix}, \quad F = \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} \text{ and } \overline{F} = \begin{bmatrix} \overline{a}_0 \\ \vdots \\ \overline{a}_n \end{bmatrix}.$$

From (3) can be derived

(4) $(\overline{B}B - \rho^2 I) F = 0.$

The method for finding f_0 consists of first finding the largest positive eigenvalue ρ^2 of \overline{BB} and then solving $(\overline{BB} - \rho^2 I)X = 0$ for a nontrivial solution $X = F_1$. Then either F_1 or $(i)(\overline{BF_1} - \rho F_1)$ is a nontrivial solution of $B\overline{X} = \rho X$. Let F denote that nontrivial solution. Then f is defined by F and f_0 by $f_0 = g - \rho \overline{z} \overline{f} / f$ on ∂D . Choosing F so that (F, F) = 1 shows that $\rho^2 = ||g||_A^2$ is the largest positive eigenvalue of \overline{BB} since F is a solution to both (3) and (4) and since $\int zgf^2 (d\theta/2\pi) = F^t B F = \rho$, where F^t is the transpose of F.

As an example of the preceding method consider $g = 3\bar{z} + 2\bar{z}^2$. Then

$$B = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \text{ and } \overline{B}B = \begin{bmatrix} 13 & 6 \\ 6 & 4 \end{bmatrix}$$

Det $(\overline{B}B - \rho^2 I) = (\rho^2 - 16)(\rho^2 - 1)$. Hence $||g||_A = 4$. Now $F = {\binom{2}{1}}$ is a solution of (3). Therefore, let f = 2 + z. Then

$$f_0 = g - 4\bar{\phi} = \frac{3z+2}{z^2} - \frac{4}{z^2} \left(\frac{1+2z}{z+2}\right)$$
 on ∂D .

1970]

WILLIAM HINTZMAN

Thus $f_0 = 3/(z+2)$ is the unique best approximation from A to g on \overline{D} .

References

1. R. C. Buck, Applications of duality in approximation theory, Proc. Sympos. Approximation of Functions (General Motors Res. Lab., 1964) Elsevier, Amsterdam, 1965, pp. 27-42. MR 33 #4554.

2. K. de Leeuw and W. Rudin, Extreme points and extremum problems in H_1 , Pacific J. Math. 8 (1958), 467-485. MR 20 #5426.

3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844.

4. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420.

SAN DIEGO STATE COLLEGE, SAN DIEGO, CALIFORNIA 92115