FOLIATIONS AND NONCOMPACT TRANSFORMATION GROUPS

BY MORRIS W. HIRSCH

Communicated by Stephen Smale, November 20, 1969

Introduction. Let G be a Lie group and M a compact C^{∞} manifold. In [2] Anosov actions of G on M are defined and proved to be structurally stable.

In this announcement we are concerned with the foliation \mathfrak{F} of M defined by the orbits of G. Under the assumption that G is connected, \mathfrak{F} is C^1 stable (3). If G is connected and nilpotent, G has a compact orbit (4). If G is merely solvable, however, there may be no compact orbit. In fact it can happen that no foliation C^0 close to \mathfrak{F} has a compact leaf (8). Upper bounds for the number of compact orbits of given type are found (9). In (7) we discuss the intersection of certain nilpotent subgroups of a Lie group S with conjugates of a uniform discrete subgroup of S.

Hyperbolic automorphisms of foliations. A k-foliation \mathfrak{T} of M is a function assigning to each $x \in M$ the image \mathfrak{T}_x of a C^2 injective immersion $V_x \to M$ of a connected k-dimensional manifold V_x . We require that the leaf \mathfrak{T}_x contain x, and that the function $T\mathfrak{T}\colon M \to G_k(M)$ assigning to $x \in M$ the tangent plane to V_x at x be C^1 ; here $G_k(M)$ is the manifold of k-planes tangent to M. Equivalently, $T\mathfrak{T}$ is a completely integrable C^1 field of k-planes, and \mathfrak{T}_x is the maximal integral submanifold through x. Thus $\{\mathfrak{T}_x\}_{x\in M}$ is a partition of M. The set $F_k(M)$ of all k-foliations of M inherits the C^0 and C^1 topologies from the set of C^1 maps $M \to G_k(M)$. We also use $T\mathfrak{T}$ to denote the bundle of k-planes tangent to the leaves.

If \mathfrak{F} , $\mathfrak{G} \subseteq F_k(M)$, a homeomorphism $h : \mathfrak{F} \to \mathfrak{G}$ is a homeomorphism of M taking each leaf of \mathfrak{F} onto a leaf of \mathfrak{G} . We call \mathfrak{F} C^1 stable if it has a C^1 neighborhood $N \subseteq F_k(M)$ of foliations homeomorphic to \mathfrak{F} .

An automorphism g of $\mathfrak F$ is a C^1 diffeomorphism of M which is a homeomorphism $\mathfrak F \to \mathfrak F$. We call g hyperbolic if there exists a splitting $TM = E_+ \oplus E_- \oplus T\mathfrak F$ invariant under Tg, and such that the following condition holds. For some (and hence any) Riemannian metric on M there exist constants $0 < \lambda < 1 < \mu$ and $n \in \mathbb{Z}_+$ such that if $X \in TM$ and $X \neq 0$, then

AMS 1969 subject classifications. Primary 2240, 5736; Secondary 5482, 3465, 3451, 3453.

Key words and phrases. Foliation, transformation group, compact orbit, structural stability.

$$\begin{array}{c|c} & \left| \begin{array}{cc} Tg^{n}X \right| < \lambda \left| \begin{array}{cc} X \right| & \text{if } X \in E_{-}; \\ \mu \left| \begin{array}{cc} X \right| < \left| \begin{array}{cc} Tg^{n}X \right| & \text{if } X \in E_{+}; \\ \mu \left| \begin{array}{cc} X \right| > \left| \begin{array}{cc} Tg^{n}X \right| > \lambda \left| \begin{array}{cc} X \right| & \text{if } X \in T\mathfrak{F}. \end{array} \end{array}$$

A deformation of \mathfrak{F} is an automorphism g which is homotopic to the identity by a homotopy g_t such that $g_t(\mathfrak{F}_x) \subset \mathfrak{F}_x$ for all $x \in M$ and $0 \le t \le 1$.

(1) THEOREM. A foliation of M which admits a hyperbolic deformation is C^1 stable.

The proof uses the stable manifold theory of [2].

(2) THEOREM. Let g be a deformation of $\mathfrak{F} \subset F_k(M)$ such that for some Riemannian metric on M, the Jacobian of

$$Tg \mid T\mathfrak{F}_x \colon T\mathfrak{F}_x \to T\mathfrak{F}_{gx}$$

is $\neq 1$ for all x. Then \mathfrak{F} has a C^0 neighborhood $N \subset F_k(M)$ such that no element of N has a compact leaf.

The idea of the proof is that if $g \in N$, some approximation to g will be an automorphism of g which preserves every leaf of g but changes its volume.

Anosov actions. Let G be a Lie group acting differentiably of class C^2 on M. Suppose the action is *locally free*, i.e., every isotropy group is discrete. Then the components of orbits define a foliation \mathfrak{F} , and every $g \in G$ is an automorphism of \mathfrak{F} . If g is a hyperbolic automorphism, we call g an Anosov element. If an Anosov element exists we call the action an Anosov action; and we also say G acts hyperbolically.

Let G_1 be the identity component of G.

Let \mathfrak{F} denote the orbit foliation of an Anosov action of G on M.

(3) THEOREM. If G/G_1 is finite, or if G_1 contains an Anosov element, then \mathfrak{F} is C^1 stable.

Proof. Follows from (1).

(4) THEOREM. Assume G is nilpotent and G/G_1 finite. Then G has a compact orbit. In fact if $A \subset G$ is a 1-parameter subgroup containing an Anosov element g, the nonwandering set of the A flow on M lies in the closure K of the union of the compact G orbits. If g is measure preserving on M, then M = K, and some orbit is dense.

The proof uses [2] to obtain a subgroup $H \subset G$ containing an Anosov element, such that H(p) is compact for some $p \in M$. Since G

is nilpotent, the normalizer N of H is bigger than H, and [2] is used to prove that $N_1(p)$ is compact. By taking successive normalizers we arrive at G.

Examples.

- (5) EXAMPLE. If G acts hyperbolically on M and H acts locally freely and transitively on N, then $G \times H$ acts hyperbolically on $M \times N$.
- (6) Example. Let G be an analytic subgroup of a Lie group S. Call G hyperbolically embedded if for some $X \in \mathcal{L}(G)$ (the Lie algebra of G), ad G has its spectrum on the imaginary axis, while ad G induces an endomorphism of $\mathcal{L}(S)/\mathcal{L}(G)$ having no spectrum on the imaginary axis. If $\Gamma \subset S$ is a uniform discrete subgroup, then G acts hyperbolically on S/Γ . For example, S = SL(n, R) and G is the diagonal subgroup. Note that Borel [1] proved that every semisimple Lie group has a uniform discrete subgroup.

From (4) we obtain

- (7) THEOREM. Let G be a connected nilpotent group which is hyperbolically embedded in S. Let $\Gamma \subset S$ be a uniform discrete subgroup. Then the set $\{s \in S \mid G/G \cap s\Gamma s^{-1} \text{ is compact}\}$ is dense in S; thus G has a uniform discrete subgroup.
- (8) EXAMPLE. Let A be a 2×2 real matrix such that e^A has integer entires, and its eigenvalues are λ and λ^{-1} , $0 < \lambda < 1$. Let R act on R^2 by $t(x) = e^{tA}(x)$. Let S be the semidirect product $R^2 \cdot R$. Note that $Z \subset R$ leaves $Z^2 \subset R^2$ invariant, and set $\Gamma = Z^2 \cdot Z \subset R^2 \cdot R$. Put $M^3 = S/\Gamma$; then M^3 is compact. Topologically, M^3 is obtained from $(R^2/Z^2) \times I$ by identifying $(x+Z^2) \times 0$ with $(e^A(x)+Z^2) \times 1$. Let $L \subset R^2$ be the λ eigenspace of e^A and let $G = L \cdot R \subset R^2 \cdot R$. Then G is a solvable nonnilpotent 2-dimensional Lie group acting hyperbolically on M^3 . The element $(0, 1) \subset G$ is an Anosov element. It follows from Theorem 2 that no sufficiently small C^0 perturbation of the orbit foliation of G on S/Γ has a compact leaf. More generally, this is the case if G is hyperbolically embedded in S as in (6), and $\operatorname{tr}(\operatorname{ad}_G X) \neq 0$.

In contrast to this phenomenon, Roussarie and Weil state that any locally free action of \mathbb{R}^2 can be \mathbb{C}^0 approximated by an action having compact orbits; see [4].

Counting compact orbits. Fix a Haar measure m for G. If $\Gamma \subset G$ is a discrete subgroup such that G/Γ is compact, it is well known that G is unimodular. Hence $\Delta(\Gamma)$ depends only on the conjugacy class $[\Gamma]$ of Γ , where $\Delta(\Gamma)$ is the measure of G/Γ induced by m.

Let G act on M. The *type* of an orbit is the conjugacy class of the isotropy group of any of its elements. Let $N(\Gamma)$ be the number of compact orbits of type $[\Gamma]$.

(9) THEOREM. Given an Anosov action of G on M, there is a constant B such that $N(\Gamma) \leq B^{\Delta(\Gamma)}$ for every uniform discrete subgroup $\Gamma \subset G$.

This theorem generalizes results of K. Meyer [3] and M. Shub [5]. The proof imitates Shub's.

BIBLIOGRAPHY

- 1. A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122. MR 26 #3823.
- 2. M. Hirsch, C. Pugh and M. Shub, *Invariant manifolds*, Bull. Amer. Math. Soc. 76 (1970), 1015-1019.
- **3.** K. R. Meyer, *Periodic points of diffeomorphisms*, Bull. Amer. Math. Soc. **73** (1967), 615–617. MR **36** #4573.
- 4. H. Rosenberg, R. Roussarie, and D. Weil, A classification of closed orientable 3-manifolds of rank two, University of Paris, Orsay. (mimeographed) (1968).
- 5. M. Shub, Periodic orbits of hyperbolic diffeomorphisms and flows, Bull. Amer. Math. Soc. 75 (1969), 57-58. MR 38 #2815.

University of California, Berkeley, California 94720.