
FOLIATIONS AND NONCOMPACT 
TRANSFORMATION GROUPS 

BY MORRIS W. HIRSCH 

Communicated by Stephen Smale, November 20, 1969 

Introduction. Let G be a Lie group and M a compact C00 manifold. 
In [2] Anosov actions of G on M are defined and proved to be struc­
turally stable. 

In this announcement we are concerned with the foliation ^ of M 
defined by the orbits of G. Under the assumption that G is connected, 
# is C1 stable (3). If G is connected and nilpotent, G has a compact 
orbit (4). If G is merely solvable, however, there may be no compact 
orbit. In fact it can happen that no foliation C° close to 9r has a com­
pact leaf (8). Upper bounds for the number of compact orbits of 
given type are found (9). In (7) we discuss the intersection of certain 
nilpotent subgroups of a Lie group S with conjugates of a uniform 
discrete subgroup of S. 

Hyperbolic automorphisms of foliations. A k-foliation ff of M is a 
function assigning to each x £ M the image &x of a C2 injective immer­
sion VX—>M of a connected ^-dimensional manifold Vx. We require 
that the leaf $x contain x, and that the function TïïlM—>Gk(M) 
assigning to x(E.M the tangent plane to Vx a t x be C1; here Gk(M) is 
the manifold of fe-planes tangent to M. Equivalently, T$ is a com­
pletely integrable C1 field of fe-planes, and SF» is the maximal integral 
submanifold through x. Thus j ^ } ^ ^ is a partition of M. The set 
Fk(M) of all ^-foliations of M inherits the C° and C1 topologies from 
the set of C1 maps M—>Gk(M). We also use TS to denote the bundle 
of fe-planes tangent to the leaves. 

If 9S gGF&(ikf), a homeomorphism h:$—>2 is a homeomorphism of 
M taking each leaf of # onto a leaf of g. We call ^ C1 stable if it has a 
C1 neighborhood N(ZFk(M) of foliations homeomorphic to 3r. 

An automorphism g of # is a C1 diffeomorphism of ikf which is a 
homeomorphism 3r—»9r. We call g hyperbolic if there exists a splitting 
TM = E+@E-®T$ invariant under Tg, and such that the following 
condition holds. For some (and hence any) Riemannian metric on M 
there exist constants 0 < X < 1 < J U and wGZ + such that if X&TM 
and XT^O, then 
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| Tg*X\ <\\x\ if i e E - ; 

fx\x\ < \Tg«X\ iiXGE+; 

fx\x\ > I TfX | > X | X | if X E T$. 

A deformation of (F is an automorphism g which is homotopic to the 
identity by a homotopy gt such that gt($x)C$x for all xÇzM and 
O ^ ^ l . 

(1) THEOREM. A foliation of M which admits a hyperbolic deforma­
tion is C1 stable. 

The proof uses the stable manifold theory of [2]. 

(2) THEOREM. Let g be a deformation of$ÇE.Fk{M) such that for some 
Riemannian metric on M, the Jacobian of 

Tg\ T$X:TSX-+T$QX 

is 7*1 for all x. Then $ has a C° neighborhood NC.Fk(M) such that no 
element of N has a compact leaf. 

The idea of the proof is that if QÇzN, some approximation to g will 
be an automorphism of 8 which preserves every leaf of g but changes 
its volume. 

Anosov actions. Let G be a Lie group acting differentiably of class 
C2 on M. Suppose the action is locally free, i.e., every isotropy group 
is discrete. Then the components of orbits define a foliation 3, and 
every g £ G is an automorphism of £F. If g is a hyperbolic automor­
phism, we call g an Anosov element. If an Anosov element exists we 
call the action an Anosov action; and we also say G acts hyperbolically. 

Let G\ be the identity component of G. 
Let $ denote the orbit foliation of an Anosov action of G on M. 

(3) THEOREM. If G/Gi is finite, or if G± contains an Anosov element, 
then CF is C1 stable. 

PROOF. Follows from (1). 

(4) THEOREM. Assume G is nilpotent and G/Gi finite. Then G has a 
compact orbit. In fact if A (ZG is a l-parameter subgroup containing an 
Anosov element g, the nonwandering set of the A flow on M lies in the 
closure K of the union of the compact G orbits. If g is measure preserving 
on M, then M — K, and some orbit is dense. 

The proof uses [2] to obtain a subgroup HC.G containing an 
Anosov element, such that H(p) is compact for some pÇzM. Since G 
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is nilpotent, the normalizer N of H is bigger than iJ, and [2 ] is used 
to prove that N\{p) is compact. By taking successive normalizers we 
arrive at G. 

Examples. 
(5) EXAMPLE. If G acts hyperbolically on M and H acts locally 

freely and transitively on Nt then GXHacts hyperbolically on MXN. 

(6) EXAMPLE. Let G be an analytic subgroup of a Lie group S. Call 
G hyperbolically embedded if for some Z G £ ( G ) (the Lie algebra of G), 
ad(?X has its spectrum on the imaginary axis, while &dsX induces an 
endomorphism of <£(S)/<£(G) having no spectrum on the imaginary 
axis. If TC.S is a uniform discrete subgroup, then G acts hyperboli­
cally on S/Y. For example, S — SL(n> R) and G is the diagonal sub­
group. Note that Borel [ l ] proved that every semisimple Lie group 
has a uniform discrete subgroup. 

From (4) we obtain 

(7) THEOREM. Let G be a connected nilpotent group which is hyper­
bolically embedded in S. Let YQSbe a uniform discrete subgroup. Then 
the set {sÇzS\G/Gr\sTs~l is compact] is dense in S; thus G has a 
uniform discrete subgroup. 

(8) EXAMPLE. Let A be a 2 X2 real matrix such that eA has integer 
entires, and its eigenvalues are X and X-1, 0 < X < 1 . Let R act on R2 

by t(x) = etA(x). Let S be the semidirect product R2R. Note that 
ZCR leaves Z2 CR2 invariant, and set T=Z2-ZCR2R. Put 
M* = S/T) then Mz is compact. Topologically, Mz is obtained from 
(R2/Z2)XI by identifying (x+Z2)X0 with (eA(x)+Z2)Xl. Let 
LCR2 be theX eigenspace of eA and let G=LRCR2R. Then*G 
is a solvable nonnilpotent 2-dimensional Lie group acting hyper­
bolically on Mz. The element (0, 1) E G is an Anosov element. I t fol­
lows from Theorem 2 that no sufficiently small C° perturbation of the 
orbit foliation of G on S/Y has a compact leaf. More generally, this is 
the case if G is hyperbolically embedded in S as in (6), and tr(ad(?X) 

In contrast to this phenomenon, Roussarie and Weil state that 
any locally free action of R2 can be C° approximated by an action 
having compact orbits; see [4]. 

Counting compact orbits. Fix a Haar measure zn for G. If TQG 
is a discrete subgroup such that G/Y is compact, it is well known that 
G is unimodular. Hence A(r) depends only on the conjugacy class 
[ r ] of T, where A(T) is the measure of G/Y induced by zn. 
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Let G act on M. The type of an orbit is the conjugacy class of the 
isotropy group of any of its elements. Let N(T) be the number of 
compact orbits of type [ r ] . 

(9) THEOREM. Given an Anosov action of G on M, there is a constant 
B such that N(T) ^ J5A(r) for every uniform discrete subgroup TC.G. 

This theorem generalizes results of K. Meyer [3] and M. Shub [5]. 
The proof imitates Shub's. 
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