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1. Introduction. The problem of imbedding a closed differentiable
manifold M* in a euclidean space can be weakened through the notion
of (modulo 2) cobordism as follows. Is M* cobordant to a submanifold
of R*++? In this context we can prove an analogue, with improved
dimensions, of H. Whitney’s theorems [11], [12]. Let a(n) denote the
number of ones in the binary expansion of #, and let > 1.

THEOREM A. Any M™ is cobordant to a manifold N™ that imbeds in
Rn—am+1 gpnd {mmerses in R¥n—am,

For n3 this result is best possible as the examples below show. In
some cases we can say more if certain Stiefel-Whitney numbers of M»
are zero. Allow the empty set as a representative of the zero cobord-
ism class. (Thus Theorem A holds for all #.)

THEOREM B. (i) If n is even (n5%6) and if Wacny* Pneam)(M™) =0
then M™ is cobordant to a manifold N™ that imbeds in R**—=™ and
immerses in Rm—am—1,

(1) If n=2*% or 2¥+1 and if Wi Wn—i(M"™) =0 for 0Z2 =553 then
M is cobordant to a manifold N* that imbeds in R*—* and immerses in
Rzn—a—l.

Let N« denote the modulo 2 cobordism ring, and let MO(k) denote
the Thom complex for O(k). There are homomorphisms

®(n, k) wasn(MO(R)) > Nn and ¥(n, &, N):Tnyetn(SYMO(E)) — N

The image of ®(n, k) is the set of cobordism classes that can be repre-
sented by submanifolds of R*** and hence coker ®(xn, k) =0if k>n
—a(n) by Theorem A. The image of ¥(n, k, N) (N>k) is the set of
cobordism classes that can be represented by manifolds which im-
merse in R™* (see R. Wells [10]) and hence coker ¥(», k, N)=0 if
k=zn—a(n), N>k.
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Real projective n-space P* (n=2*%+41, k>1) is known not to imbed
in R?2 (see J. Levine [2]) but is cobordant to S* which does. Com-
plex projective n-space CP* (n=2*% k>1) does not immerse in R4—?2
(see J. Levine [3]) but is cobordant to P»X P* which does. Hence in
Theorem B it is sometimes necessary to have M»= N». However we
know of no manifold M* that does not imbed in R?*~=+1 and im-
merse in R2m—a™,

2. Decomposables in Y« The main theorems are proved by im-
bedding and immersing manifolds constructed from real projective
spaces until we have enough to form a basis of Mx. We illustrate the
method by outlining the proof of Theorem A.

PRrROPOSITION 2.1. Suppose for each n=2%—1 there is a manifold V*
whose cobordism class [V*] is an indecomposable element of N« and
which imbeds in R2"—™+1 and immerses in R*—2™, Then Theorem A
holds.

PRrOOF. According to R. Thom [9] the cobordism classes [V*]
generate the ring M. Given a product M»= [[ V7 we can use the
product immersion to immerse M* in (D (27 —a(7)))-space. Because
a(i+5) Sa(?)+a(j) we have actually immersed M* in (2n—a(n))-
space or better. The product imbedding is not good enough, so to
imbed M* in (2n—a(n)+1)-space we use inductively the following
well-known result. (For a three line proof see [7].)

LeEmMMA 2.2. If M™ imbeds in R®*, N™ immerses in Rt, and s+t>2n
(which is true if m =n) then M™X N imbeds in R+t

Any M is cobordant to a disjoint union of products of the V7 and
we can imbed and immerse this disjoint union in the obvious way,
thus proving Theorem A.

3. Construction of indecomposables. Let # be even and let
n=n+ -+ 4+n 2=2n< - .- <) be the binary expansion of # as
a sum of distinct powers of 2. Thus a(n)=Fk. Let V*=P* if k=1
and for k>1 let V" be a submanifold of K»+'=Prw+1x [[521 P
dual tooy+ - « + +a, EHY(K"*!; Z;) where o; generates the modulo 2
cohomology ring of the 7th factor.

ProPosITION 3.1. [V*] is an indecomposable element of Nu and V*
satisfies the conditions of Proposition 2.1.

Proor. The first part follows from a computation of the total
Stiefel-Whitney class w(V*) and from standard arguments using ele-
mentary symmetric functions (see R. E. Stong [8, p. 79]). The second
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part is based on an immersion of P* (n=2¢+41) in R*® due to B. J.
Sanderson [6]. Whitney’s results (M" imbeds in R?* and immerses in
R#—1) and the product immersion or inductive use of Lemma 2.2
finish the proof.

REMARK 3.2. M*»= Hf_ 1 Pri has @y - w,.—r %0 and hence furnishes a
counterexample to improving Theorem A when # is even.

The above construction of even dimensional generators was in-
spired by the work of J. Milnor [5] and the following is a modification
of A. Dold’s construction of odd dimensional generators of N« [1].
Given a positive integer # and a topological space X form P(m, X)
from S™ XX XX by identifying (u, x, ¥) with (—u«, y, x).

ProPOsITION 3.3. P(m, M*) is an (m-+2n)-manifold and represents
an indecomposable element of N if and only if [M™] is indecomposable
and the binomial coefficient ("%*~ ") =1 (mod 2).

A map X— Y induces a map P(m, X)—P(m, Y) and differentiable
imbeddings and immersions are preserved by this functor. Also
P(m, R®) is the total space E(syn @ se) where vy, € are respectively the
canonical line bundle and the trivial line bundle over P». Thus we
have proved

ProrosiTiON 3.4. If M™ imbeds (immerses) in R® and E(sYm® se)
imbeds (immerses) in Rt then P(m, M™) imbeds (immerses) in R:.

Now let # be odd, 2% —1, We can write uniquely n=2r(2s+1) —1
=2r—142rtls (r>0, s>0). Let a=27—1, b=2rs and V*=P(a, V?).

PRroPOSITION 3.5. V™ satisfies Proposition 2.1.

ProoF. By Propositions 3.1 and 3.3, [V#] is indecomposable. Using
the imbedding and immersing part of Proposition 3.1 we can apply
Proposition 3.4 to reduce the proof to imbedding and immersing cer-
tain sums of line bundles over P4 Now the work of M. Mahowald
and R. Milgram [4, Lemma 1.5] gives the required result.

REMARK 3.6. Using the notation of the beginning of this section let
Mr1=P@1, )Xzt Prs. If n>2 then Wiy Wora(M") 0 so
M=+ gserves as a counterexample to improving Theorem A.
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