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1. Introduction. The problem of imbedding a closed differentiable 
manifold Mn in a euclidean space can be weakened through the notion 
of (modulo 2) cobordism as follows. Is Mn cobordant to a submanifold 
of Rn+k7 In this context we can prove an analogue, with improved 
dimensions, of H. Whitney's theorems [ l l ] , [12]. Leta(n) denote the 
number of ones in the binary expansion of n, and let n> 1. 

THEOREM A. Any Mn is cobordant to a manifold Nn that imbeds in 
#2n-«(»)+l an(l immerses in R2n-*(n)t 

For n^3 this result is best possible as the examples below show. In 
some cases we can say more if certain Stiefel-Whitney numbers of Mn 

are zero. Allow the empty set as a representative of the zero cobord­
ism class. (Thus Theorem A holds for all n.) 

THEOREM B. (i) If n is even (n?*6) and if wa(n)'Wn^a(n)(Mn)=0 
then Mn is cobordant to a manifold Nn that imbeds in R2n~<*w and 
immerses in 2?2»-«(»>-i. 

(ii) If n = 2k or 2* + l and if Wi-wn-i(M
n)==Q for 0^i^s<>3 then 

Mn is cobordant to a manifold Nn that imbeds in J£2n~« and immerses in 

Let Sft* denote the modulo 2 cobordism ring, and let MO(k) denote 
the Thorn complex for 0(k). There are homomorphisms 
*(», *) : *n+k(M0(*)) -> 9tn and ¥(», *, N) : Tn+k+N(SNMO(k)) -+ 5ft*. 

The image of $(w, k) is the set of cobordism classes that can be repre­
sented by submanifolds of Rn+k and hence coker $(w, k) = 0 if k>n 
—a(n) by Theorem A. The image of ^(w, k, N) (N^>k) is the set of 
cobordism classes that can be represented by manifolds which im­
merse in Rn+k (see R. Wells [lO]) and hence coker W(n, k, N) = 0 if 
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Real projective w-space Pn (n = 2k+l, k>l) is known not to imbed 
in R2n~2 (see J. Levine [2]) but is cobordant to Sn which does. Com­
plex projective w-space CPn (n = 2k, k>l) does not immerse in i?4n~2 

(see J. Levine [3]) but is cobordant to PnXPn which does. Hence in 
Theorem B it is sometimes necessary to have Mn9£Nn. However we 
know of no manifold Mn that does not imbed in 2?2n-aoo+i and im­
merse in jR2n-a(n\ 

2. Decomposables in 91*. The main theorems are proved by im­
bedding and immersing manifolds constructed from real projective 
spaces until we have enough to form a basis of 91*. We illustrate the 
method by outlining the proof of Theorem A. 

PROPOSITION 2.1. Suppose for each n5*2k — l there is a manifold Vn 

whose cobordism class [Vn] is an indecomposable element of 9Î* and 
which imbeds in i£2n-a(n)+i an^ immerSes in R2n-<*(n\ Then Theorem A 
holds. 

PROOF. According to R. Thorn [9] the cobordism classes [Vn] 
generate the ring 91*. Given a product Mn = H Vj we can use the 
product immersion to immerse Mn in (^(2j -~a.{j)))-spa,ce. Because 
a(i+j)^a(i)+a(j) we have actually immersed Mn in (2n—a(n))-
space or better. The product imbedding is not good enough, so to 
imbed Mn in (2n —a(w) + l)-space we use inductively the following 
well-known result. (For a three line proof see [7].) 

LEMMA 2.2. If Mm imbeds in R8, Nn immerses in JRe, and s+t>2n 
(which is true ifm^n) then MmXNn imbeds in R*+K 

Any Mn is cobordant to a disjoint union of products of the V* and 
we can imbed and immerse this disjoint union in the obvious way, 
thus proving Theorem A. 

3. Construction of indécomposables. Let n be even and let 
n=zri-\- . . . -f-̂  ( 2 ^ f i < • • • O*) be the binary expansion of n as 
a sum of distinct powers of 2. Thus a(n)=k. Let Vn~Pn if fe = l 
and for k>l let Vn be a submanifold of Kn+1 = Pr*+1X Tiï-l pr{ 

dual to a i + • • • +ai6ÇzH1(Kn+1; Z2) where at- generates the modulo 2 
cohomology ring of the i th factor. 

PROPOSITION 3.1. [Vn] is an indecomposable element of 91* and Vn 

satisfies the conditions of Proposition 2.1. 

PROOF. The first part follows from a computation of the total 
Stiefel-Whitney class w(Vn) and from standard arguments using ele­
mentary symmetric f unctions (see R. E. Stong [8, p. 79]). The second 
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part is based on an immersion of Pn (w==2* + l) in R2n~z due to B. J. 
Sanderson [ô]. Whitney's results (Mn imbeds in Jf?2w and immerses in 
jR2n_1) and the product immersion or inductive use of Lemma 2.2 
finish the proof. 

REMARK 3.2. Mn= Ü L i Pr* has wk-wn-.k7*0 and hence furnishes a 
counterexample to improving Theorem A when n is even. 

The above construction, of even dimensional generators was in­
spired by the work of J. Milnor [5] and the following is a modification 
of A. DokTs construction of odd dimensional generators of 91* [ l ] . 
Given a positive integer m and a topological space X form P(m, X) 
from SmXX XX by identifying (u, x% y) with ( — u, y, x). 

PROPOSITION 3.3. P(m, Mn) is an (m+2n)-manifold and represents 
an indecomposable element of 5ft* if and only if [Mn] is indecomposable 
and the binomial coefficient f ^ ^ s l (mod 2). 

A map X—» Y induces a map P(my X)—>P(m$ Y) and differentiate 
imbeddings and immersions are preserved by this functor. Also 
P(m, R8) is the total space E(sym®se) where ymi e are respectively the 
canonical line bundle and the trivial line bundle over P m . Thus we 
have proved 

PROPOSITION 3.4. If Mn imbeds (immerses) in R8 and E(sym®se) 
imbeds (immerses) in R* then P(m, Mn) imbeds (immerses) in R*. 

Now let n be odd, n^2k — 1. We can write uniquely n = 2 r (2s+ l ) — 1 
= 2 ' - l + 2 ' + 1 s ( r > 0 , s > 0 ) . Let a = 2 ' - l , b = 2's and V*=P(a, Vh). 

PROPOSITION 3.5. Vn satisfies Proposition 2.1. 

PROOF. By Propositions 3.1 and 3.3, [Vn] is indecomposable. Using 
the imbedding and immersing part of Proposition 3.1 we can apply 
Proposition 3.4 to reduce the proof to imbedding and immersing cer­
tain sums of line bundles over Pa. Now the work of M. Mahowald 
and R. Milgram [4, Lemma 1.5] gives the required result. 

REMARK 3.6. Using the notation of the beginning of this section let 
Afn+1 = P ( l , irk)xfliZlPr*. If n>2 then wk+vwn^h^(Mn)^0 so 
Mn+1 serves as a counterexample to improving Theorem A. 
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