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Let B be a linear subspace of CR(X), the continuous real functions 
on a compact space X> and let V be the Silov boundary of B in X. 
We give here conditions which are sufficient for there to be an integral 
representation of the form 

(1) <x) = f u(d)gx(d)dfJL(e), 
J r 

where x—>gx is a continuous map from some subset A of X into L^Qx). 
With the additional condition that A is separable, we obtain a kernel 
representation of the form 

(2) u(x) = f u(d)Q(x, 6)dfx(d) 
J r 

where Q is a continuous function of x and x—>Q(x, •) is continuous 
with respect to the £»(/*) norm. If it is also the case that ^ | T is 
dense in Li(ju)> then ()(•, 0) is a limit (uniform convergence on com­
pact subsets of A) of functions in B. These results also give integral 
representations like (1) and (2) for a complex function algebra, simply 
by considering the space B of real parts of the algebra. The details 
of this work will appear in [3]. 

We use the following notation throughout this paper: 
X is a compact Hausdorff space, with topology 3. 
B is a linear subspace of CR(X), containing the constant functions, 

and separating the points of X. 
T is the Silov boundary of B in X. 
BA, for any set AQX, is the closure of B\ A in the topology of uni­

form convergence on compact subsets of A. 
B+(A, z) = {u\A:uEB, U>0, u(z) = l}. 
(JBA is an abstract version of "all harmonic functions on A," and 

J3+(A, z) is the set of normalized-at-z positive i3-functions.) 
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A representing measure v for x £ Z is a positive Baire probability 
measure on Y such that u(x) — J?udv for all uÇzB. 

Px is the set of all representing measures for x. 
B1- is the set of real signed measures on Y which are orthogonal to B. 
B' is the space of sup-norm continuous linear functionals on B, 

with the w*-topology = the w{B\ B) topology = the topology of point-
wise convergence on B. 

TB= {FEB':F(l) =\\F\\ = l } . TB is a compact convex set in B'. 
We consider X embedded homeomorphically in TB- Then Y is the 

closure of the extreme points of TB, and B is isometric to the restric­
tion to TB or X or Y of all ze/*-continuous linear functionals on B'. 

We use x, y, z etc. for points of TB, and write u(x) for x(u), where 
xE:TB and uÇzB. 

Write x~y for x, yÇ^Ts iff there is a number a such that 

(3) ar1 < u(x)/u(y) < a 

for all strictly positive uÇzB. The relation ~ is an equivalence rela­
tion, and the equivalence classes are called the Gleason parts of X 
or TB- The parts of X are the intersections of X with the parts of TB-
The Gleason parts of a complex function algebra A are the same as 
the parts defined by the space B = Re A. 

On each part A of X or TB define a metric as follows: 
d(x, y) = sup{ | log u(x)— log u(y)\ luÇEB, u>0}. Write d(x, y) = oo 

if xnoy. Let 3d be the ^-metric topology on A. 
The parts of TB are convex subsets which can be characterized as 

follows: x~y iff the segment [x, ;y] extends some distance beyond x 
and y in TB\ i.e., if 

(1 + r)x -ryE TBf 

(1 + r)y — rx G TB, 

for some r > 0. Then we also have 

(5) d(x, y) = inf {log(l + 1/r) :r satisfies (4)}. 

We use this definition of part and part metric d in any convex set 
containing no whole line. 

Let C— CR(Y), SO that Tc can be identified with the positive proba­
bility measures on T. The part IIM of Tc containing IJL is the set of all 
measures g/z, where g is a positive function of LOO(M) which is bounded 
away from zero. 

We use D for the part metric in parts of Tc- Convergence in D is 
equivalent to convergence of the corresponding g's in Z,OO(M)- We write 
D(g, h) instead of D{gfx, JIJJL) for points g/x, hfx of Tc. 
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The part metric on any part of a function space is complete. That 
is d is complete on any part A of X or TB, and D is complete on parts 
nM of Tc. 

Let A be a part of X with part metric d. Then 3 = 3d iff B+(A, z) is 
equicontinuous for some (every) z G A. 

The following theorem indicates the extent to which our sufficient 
conditions are necessary. 

THEOREM 1. If A is a subset of X, and there is a continuous map 
x—>gxfJL on A to a part IIM of Tc (so that x—>gx is a continuous map into 
I*OO(AO) fl»d 

(6) u(x) = I ugxdfx 
J r 

for all uÇzB, xÇA, then A is contained in a part of Xy and 3 = 3d on A. 
For any convex set K, let K{ be the set of all x £ X such that for 

every yÇzK, the segment [y, x] extends beyond x in K. If i£>V0, 
then K{ is a part, which we call the inner part of K. (Incidentally, K 
is a convex body in some linear topological space iffiOVO.) Finite 
dimensional convex sets have nonempty inner parts. 

THEOREM 2. Let Abe a part of X, with 3 = 3d on A. Let Pl^Ofor some 
x £ A . Then there is a continuous map x—>gxfJL on A into some part IIM of 
Tc such that gxy>£:Pxfor all x £ A . 

Note. The condition 3 = 3d can be replaced by the assumption that 
B+(A, Z) is equicontinuous. The condition P ^ O is implied by the 
assumption that B1- is finite dimensional. The measure gxfx is a D-
continuous function of x, which implies that gx is an Loo-continuous 
function of x. 

INDICATION OF PROOF. If J3X is finite dimensional, then each P x is, 
and hence P ^ O . If P ^ O for some x, then P* 5^0 for all y~xt and the 
sets P£, x £ A , are all contained in one part IIM of Tc. This result is due 
to Har'kova [ó], who makes ingeneous use of Bishop's theorem [S]. 
If Â is the part of TB containing A, then PxCJln for all # £ Â . The 
projection of IIM into TB (restriction of the measures from C = CR(T) 
to B) is a D-d continuous affine map on IIM onto Â. This restriction 
map is therefore open, since IIM, D and Â, d are one-part complete 
convex sets [ l ] . The inverse map, x - ^ P / ^ I I ^ = Pxy is a lower semi-
continuous map of Â into Z>-closed convex subsets of IIM. By an 
adaptation of Michael's continuous selection theorem to part-metric 
setting [2, Theorem 12] there is a continuous selection x—>g*ju€E ̂ It-
Continuity with respect to d on A and D in IIM is the same as con-
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tinuity with respect to 3 on A, and the L„ norm applied to the func­
tions gx. 

THEOREM 3. Assume the hypotheses of Theorem 2, and in addition 
that A has a countable dense set. Then there is a measure jx on V and a 
jointly measurable function Q(x, 0) on A XT such that Q(x, -)dfx(') 
represents x, x—>Q(x, •) is L^-continuous, and Q(-,0) is continuous on 
A for eachOÇzY. If B \ Y is dense in Z/i(/x), then Q( •, 6)ÇiB&for eachdÇzT. 

PROOF. The proof of [4] can be modified to get from the measure-
able functions gx(6) to a kernel Q(x, 0) in the separable case. The fact 
that Q{-, 0) G B A is also proved in [4], with an assumption that implies 
£ | T is dense in Li(jx). 
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