CONTINUOUS SELECTION OF REPRESENTING MEASURES¹

BY H. S. BEAR

Communicated by Victor Klee, August 25, 1969

Let B be a linear subspace of $C_R(X)$, the continuous real functions on a compact space X, and let Γ be the Šilov boundary of B in X. We give here conditions which are sufficient for there to be an integral representation of the form

(1)
$$u(x) = \int_{\Gamma} u(\theta) g_x(\theta) d\mu(\theta),$$

where $x \to g_x$ is a continuous map from some subset Δ of X into $L_{\infty}(\mu)$. With the additional condition that Δ is separable, we obtain a kernel representation of the form

(2)
$$u(x) = \int_{\Gamma} u(\theta) Q(x, \theta) d\mu(\theta)$$

where Q is a continuous function of x and $x \rightarrow Q(x, \cdot)$ is continuous with respect to the $L_{\infty}(\mu)$ norm. If it is also the case that $B \mid \Gamma$ is dense in $L_1(\mu)$, then $Q(\cdot, \theta)$ is a limit (uniform convergence on compact subsets of Δ) of functions in B. These results also give integral representations like (1) and (2) for a complex function algebra, simply by considering the space B of real parts of the algebra. The details of this work will appear in [3].

We use the following notation throughout this paper:

X is a compact Hausdorff space, with topology 5.

B is a linear subspace of $C_R(X)$, containing the constant functions, and separating the points of X.

 Γ is the Šilov boundary of B in X.

 \overline{B}_{Δ} , for any set $\Delta \subset X$, is the closure of $B \mid \Delta$ in the topology of uniform convergence on compact subsets of Δ .

$$B^{+}(\Delta, z) = \{u \mid \Delta : u \in B, u > 0, u(z) = 1\}.$$

 $(\overline{B}_{\Delta}$ is an abstract version of "all harmonic functions on Δ ," and $B^{+}(\Delta, z)$ is the set of normalized-at-z positive B-functions.)

AMS Subject Classifications. Primary 4625, 4655; Secondary 5200.

Key Words and Phrases. Linear subspace of $C_R(X)$, integral representation kernel representation, Gleason parts, part metric, function algebra.

¹ This research was supported in part by grant NSF GP 7681.

A representing measure ν for $x \in X$ is a positive Baire probability measure on Γ such that $u(x) = \int_{\Gamma} u d\nu$ for all $u \in B$.

 P_x is the set of all representing measures for x.

 B^{\perp} is the set of real signed measures on Γ which are orthogonal to B.

B' is the space of sup-norm continuous linear functionals on B, with the w^* -topology = the w(B', B) topology = the topology of pointwise convergence on B.

 $T_B = \{ F \in B' : F(1) = ||F|| = 1 \}$. T_B is a compact convex set in B'.

We consider X embedded homeomorphically in T_B . Then Γ is the closure of the extreme points of T_B , and B is isometric to the restriction to T_B or X or Γ of all w^* -continuous linear functionals on B'.

We use x, y, z etc. for points of T_B , and write u(x) for x(u), where $x \in T_B$ and $u \in B$.

Write $x \sim y$ for $x, y \in T_B$ iff there is a number a such that

(3)
$$a^{-1} < u(x)/u(y) < a$$

for all strictly positive $u \in B$. The relation \sim is an equivalence relation, and the equivalence classes are called the Gleason parts of X or T_B . The parts of X are the intersections of X with the parts of T_B . The Gleason parts of a complex function algebra A are the same as the parts defined by the space B = Re A.

On each part Δ of X or T_B define a metric as follows:

 $d(x, y) = \sup \{ |\log u(x) - \log u(y)| : u \in B, u > 0 \}.$ Write $d(x, y) = \infty$ if $x \sim y$. Let \mathfrak{I}_d be the d-metric topology on Δ .

The parts of T_B are convex subsets which can be characterized as follows: $x \sim y$ iff the segment [x, y] extends some distance beyond x and y in T_B ; i.e., if

(4)
$$(1+r)x - ry \in T_B,$$

$$(1+r)y - rx \in T_B,$$

for some r > 0. Then we also have

(5)
$$d(x, y) = \inf\{\log(1 + 1/r): r \text{ satisfies } (4)\}.$$

We use this definition of part and part metric d in any convex set containing no whole line.

Let $C = C_R(\Gamma)$, so that T_C can be identified with the positive probability measures on Γ . The part Π_{μ} of T_C containing μ is the set of all measures $g\mu$, where g is a positive function of $L_{\infty}(\mu)$ which is bounded away from zero.

We use D for the part metric in parts of T_c . Convergence in D is equivalent to convergence of the corresponding g's in $L_{\infty}(\mu)$. We write D(g, h) instead of $D(g\mu, h\mu)$ for points $g\mu, h\mu$ of T_c .

The part metric on any part of a function space is complete. That is d is complete on any part Δ of X or T_B , and D is complete on parts Π_{μ} of T_C .

Let Δ be a part of X with part metric d. Then $\mathfrak{I} = \mathfrak{I}_d$ iff $B^+(\Delta, z)$ is equicontinuous for some (every) $z \in \Delta$.

The following theorem indicates the extent to which our sufficient conditions are necessary.

THEOREM 1. If Δ is a subset of X, and there is a continuous map $x \rightarrow g_x \mu$ on Δ to a part Π_{μ} of T_C (so that $x \rightarrow g_x$ is a continuous map into $L_{\infty}(\mu)$) and

(6)
$$u(x) = \int_{\Gamma} u g_x d\mu$$

for all $u \in B$, $x \in \Delta$, then Δ is contained in a part of X, and $\mathfrak{I} = \mathfrak{I}_d$ on Δ . For any convex set K, let K^i be the set of all $x \in K$ such that for every $y \in K$, the segment [y, x] extends beyond x in K. If $K^i \neq 0$, then K^i is a part, which we call the *inner part* of K. (Incidentally, K is a convex body in some linear topological space iff $K^i \neq 0$.) Finite dimensional convex sets have nonempty inner parts.

THEOREM 2. Let Δ be a part of X, with $\mathfrak{I} = \mathfrak{I}_d$ on Δ . Let $P_x^t \neq 0$ for some $x \in \Delta$. Then there is a continuous map $x \to g_x \mu$ on Δ into some part Π_{μ} of T_C such that $g_x \mu \in P_x$ for all $x \in \Delta$.

Note. The condition $3=3_d$ can be replaced by the assumption that $B^+(\Delta, z)$ is equicontinuous. The condition $P_x^t \neq 0$ is implied by the assumption that B^\perp is finite dimensional. The measure $g_x\mu$ is a D-continuous function of x, which implies that g_x is an L_∞ -continuous function of x.

Indication of Proof. If B^{\perp} is finite dimensional, then each P_x is, and hence $P_x^t \neq 0$. If $P_x^t \neq 0$ for some x, then $P_y^t \neq 0$ for all $y \sim x$, and the sets P_x^t , $x \in \Delta$, are all contained in one part Π_{μ} of T_c . This result is due to Har'kova [6], who makes ingeneous use of Bishop's theorem [5]. If $\hat{\Delta}$ is the part of T_B containing Δ , then $P_x^t \subset \Pi_{\mu}$ for all $x \in \hat{\Delta}$. The projection of Π_{μ} into T_B (restriction of the measures from $C = C_R(\Gamma)$ to B) is a D-d continuous affine map on Π_{μ} onto $\hat{\Delta}$. This restriction map is therefore open, since Π_{μ} , D and $\hat{\Delta}$, d are one-part complete convex sets [1]. The inverse map, $x \to P_x \cap \Pi_{\mu} = P_x^t$, is a lower semicontinuous map of $\hat{\Delta}$ into D-closed convex subsets of Π_{μ} . By an adaptation of Michael's continuous selection theorem to part-metric setting [2, Theorem 12] there is a continuous selection $x \to g_x \mu \in P_x^t$. Continuity with respect to d on Δ and D in Π_{μ} is the same as con-

tinuity with respect to 3 on Δ , and the L_{∞} norm applied to the functions g_x .

THEOREM 3. Assume the kypotheses of Theorem 2, and in addition that Δ has a countable dense set. Then there is a measure μ on Γ and a jointly measurable function $Q(x, \theta)$ on $\Delta \times \Gamma$ such that $Q(x, \cdot)d\mu(\cdot)$ represents $x, x \rightarrow Q(x, \cdot)$ is L_{∞} -continuous, and $Q(\cdot, \theta)$ is continuous on Δ for each $\theta \in \Gamma$. If $B \mid \Gamma$ is dense in $L_1(\mu)$, then $Q(\cdot, \theta) \in \overline{B}_{\Delta}$ for each $\theta \in \Gamma$.

PROOF. The proof of [4] can be modified to get from the measureable functions $g_x(\theta)$ to a kernel $Q(x, \theta)$ in the separable case. The fact that $Q(\cdot, \theta) \in \overline{B}_{\Delta}$ is also proved in [4], with an assumption that implies $B \mid \Gamma$ is dense in $L_1(\mu)$.

REFERENCES

- 1. Heinz Bauer, An open mapping theorem for convex sets with only one part (to appear).
- 2. Heinz Bauer and H. S. Bear, The part metric in convex sets, Pacific J. Math. 30 (1969), 15-33.
 - 3. H. S. Bear, Lectures on Gleason parts, Springer Lecture Notes (to appear).
- 4. H. S. Bear and Bertram Walsh, Integral kernel for one-part function spaces, Pacific J. Math. 23 (1967), 209-215. MR 36 #6643.
- 5. Errett Bishop, Representing measures for points in a uniform algebra, Bull. Amer. Math. Soc. 70 (1964), 121-122. MR 28 #1510.
- 6. N. V. Har'kova, Generalized Poisson formula, Vestnik Moskov Univ. Ser. I Mat. Meh. 22 (1967), no. 4, 25-30. (Russian) MR 35 #4733.

University of Hawaii, Honolulu, Hawaii 96822