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I. Introduction. In this paper we bring the following two results: 
Suppose that F(z)~biZ+b2Z2 + , • • • is a B.E. function (i.e. F(z) 

is regular in the unit circle, F(z)F(^)9£l for any | z | , |f| < 1 and 
F(0) = 0). Then we have 

CD è 1**1*3*1. 

This result contains, of course, the result 

(2) \bn\ S 1, » = 1,2, • • -

which was conjectured by Rogosinsky [8] and was solved about ten 
years later by Lebedev and Milin [5]. 

The second result deals with univalent B.E. function F(z) 
= &i2+&22

2+ • • • . For such function we have the following 

(3) I »» I â e-<t*(n - I)"1 /2 , n - 2, 3, • • • , 
where c is Euler constant. 

This result is sharp in order of magnitude and the constant cannot 
be improved to be better than e~112. 

II . The results of Lebedev and Milin. Lebedev and Milin found 
[6], [7] some important results concerning coefficients of exponential 
functions which we quote here. 

LEMMA 1. Let Ai, A2, Az, • • • be an infinite sequence of arbitrary 
complex numbers such that ]C*°«i k\Ak\

 2 < *>. Then for exp]T]ibLi AkZk 

= X X o DhZh we have 

(4) £ I Z^2^exp2>U*|2 

with equality only in the case Ak—p^/k, fe = l, 2, • • • where 0 ^ p < l 
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LEMMA 2. Let {Ak} and {Dk} be defined as in Lemma 1 (without the 
limitation X)JT» I & | A k | 2 < <*> ). Then 

(5) £ w | 2 â e x p ( ] T > | M2- è l / * Y n = 1, 2, 

with equality only in the case Ak=7jk/kfor k — 1, 2, • • • , n and \v\\ = 1. 

III. Schiffer-Garabedian inequalities. We quote here a theorem of 
Garabedian and Schiffer [l ] : 

LEMMA 3. Suppose that F(z) is a univalent B.E. function. Then we 
have for 

F(z) - F(f) -

(«-f)[l--P(«)F(f)J n,m=0 

(7) R e ^ Z \n\m7nm\ S E ~ L J L L 

v n,m=0 / n=»l ^ 

wA£re Xo, Xi, X2, • • • , \N is a finite sequence of complex constants with 
Xo real. 

This remarkable result was proved first in [l] by variational meth­
ods. Later the result was proved in [3] by area methods. We note 
that in [l ] the result was formulated in a different manner. 

IV. Coefficients of B.E. functions. From Lemma 3 we deduce 
immediately the following: 

(8) è * h * o M l o g 
*«i 1 n o ) I2 

(Indeed from Lemma 3 we have 

( N } N I X I2 

Xo Re{log F'(0)} + 2Xo Re ^ E Xw7no> ^ 2 £ -LJLL . 

By substitution Xo = 2, X» = #7„o we get (8).) 
We are now in a position to prove 

THEOREM 1. Let F(z)=biZ+b2Z2+ • • • be a B.E. function; then (1) 
follows. 

PROOF. By substituting f = 0 in (6) we have 

Flz) °° F(z) / °° \ °° bh 
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By Lemma 1 and (8) we get 

(10) S i i gexpf Z > | » y J ' ) g - i r -

So our theorem follows for univalent B.E. function. The result is 
generalized to the general class by the principle of subordination 
[2, pp. 424-425], [9]. 

REMARK 1. The result is sharp for the B.E. function F(z)~zn
y n 

= 1, 2, • • • and also for JenkhVs functions [4] 

(1 - r2y'h 
(11) F(z) = , 0 £ r < 1. 

1 + irz 
REMARK 2. JenkhVs result [4] 

(12) F(z)£ | « | / ( 1 - | * | 2 ) 1 / 2 

follows easily from Theorem 1. 

THEOREM 2. Let F(z)~biz+faz2+ • • • be a univalent B.E. func­
tion. Then we have 

(13) | bn | < e~c'2{n - I)"1 '2 , » = 2, 3, • • • 

where c is Ruler constant. 

PROOF. By Lemma 2 and (8), (9) we have 

e x p ( - J^l/k) 

(14) I»»' < e x p ( S ü l T o i l ' - S V * ) ^ , , 
^ | F ' ( 0 ) | 2 ~ P \ t î , T 0 1 *~i / | F ' ( 0 ) | 2 

n = 2, 3, • • •. 

So |&»|2<e~c(w —1)_ 1 which is another form of our theorem. For 
JenkhVs functions (11) we have \bn\

 2 = {l-r2)r^n-x). If 1 - r 2 

= l/(w —1) we have 

in--4(1—4) 
« — 1 \ » — 1 / 

»-i J 

e(w — 1) 

So the order of magnitude is the best possible and the argument for 
the constant also follows. 
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