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A partially ordered set P in which every pair of elements has a 
greatest lower bound is a semigroup, with pq^pAq, and hence is 
naturally associated with a semigroup algebra Z[P] over the integers. 
For finite P Solomon has given [3 ] a marvelously ingenious construc
tion of an analogous sort of algebra even when P is not a semilattice 
and so cannot be made into a semigroup. Semigroup algebras and 
Solomon's "Möbius algebras" have applications in combinatorial 
problems involving the underlying orders. 

Now in a recent study [2] of valuations and Euler characteristics 
on lattices Rota introduced an ostensibly quite different sort of 
algebra he called a "valuation ring" which, rather surprisingly, plays 
a role like that of a semigroup algebra. More surprising, in view of 
their entirely different genesis and description, is tha t Rota's valua
tion ring can be shown to include Solomon's Möbius algebra as a 
special case. 

Rota's construction, when used to associate such an algebra to a 
partial order P (which is only one outgrowth of his inquiry), leads in 
stages through several different structures. The results implicitly 
provide a recursive procedure for computing products in the valua
tion ring V(P), but give no direct formula. Solomon, on the other 
hand, defined his Möbius algebra by giving an explicit, if rather com
plicated, formula to express products of elements of P as linear combi
nations of P-elements. The purpose of this note is to determine from 
Rota's construction an explicit formula for products in VÇP) which 
depends only on the order structure of P. This will show at once that 
Rota's construction includes Solomon's, and it can be recast in a 
particularly simple form that clarifies further consequences and 
applications. 
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1. The Rota construction. Let L = {5, 7\ • • • } be any distributive 
lattice under U and f\ made into a semigroup by setting ST = Sr\T. 
In the semigroup algebra K[L] over a commutative ring K the sub-
module Q generated by all S+T—ST — S\JT with S and T in L is an 
ideal. Since valuations on L are just those functionals which are 
identically zero on Q, Rota calls the quotient K[L]/Q the valuation 
ring V(L, K). The special case of interest in this note has L the lattice 
of "order ideals" of a partial order (P, a ) and K = Z, the ring of 
integers. 

Let P be such that every cone Cp = {q £ P : q ̂  p} is finite and define 
L to be the ring of sets generated by all cones, with 0 added. Then 
L is a distributive lattice whose finite elements admit the convenient 
height function, ht 5 = | S\ (number of elements in S). The quotient 
Z[L]/Q may in this case, because of its likeness to the semigroup 
algebra of a semigroup, be called the order algebra, V(P), of P. 

Identifying elements of L with their images in V, Rota extends the 
identity defining Q to give a general inclusion-exclusion formula that 
expresses any finite union of lattice elements as a linear combination: 

r 

(*) Si W • • • \JSr = T,Si - J^SiSj + ] £ StSjSk - • • • . 
i = l i<j i<j<k 

LEMMA 1. Any S of finite height in L is a well-defined linear combina
tion, S = ]C*>ep <t>s{p) Cp, of cones contained in S: that is <f>$(p) = 0 unless 

cPcs. 
The proof is by induction on the height of 5 . If h t 5 = 0 then S = 0 

and this is T+T-TT-TKJT = Q. 
Any other element of finite height in L is either a cone or a finite 

union of join irreducibles (i.e. cones) of finite height. Now assume the 
lemma for elements of height <h and suppose ht S — h. If S is not 
itself a cone it must be an irredundant union, S=CP1\J • • • UC P r , of 
the maximal cones contained in 5 . By (*), 5 = X)CP<— ^CPiCPS 

+ • • • , where each term CP1 • • • CPh on the right has height <h 
and hence, by induction, is a well-defined linear combination of cones 
Cq contained in it, and thus in each CPi. Then S is the well-defined 
linear combination gotten by adding all such terms, and furthermore 
each CqC.CPiCS. 

(If S is written as a nonirredundant union of cones, which can only 
be done by using all the maximal CPi in S and other cones Cr con
tained within some of them, it is easy to show that the added con
tribution from the C/s amounts to zero.) 

Thus V essentially consists of all linear combinations of cones and 
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its multiplication can be taken to define a (commutative Z-algebra) 
product among P-elements, say o, by the rule: x oy= ^PEP <t>xy{p) 'P 
if and only if CxCy =

 y^iPep<t>xy(p)Cp. This way of writing the V(P) 
product brings out the analogy with semigroup algebras; of course, 
VÇP) is the integral semigroup algebra on P if and only if P is a 
semilattice. 

2. Explicit formula for the product. Rota's procedures show how 
to compute such products by working upward from minimal elements, 
but provide no direct way to determine CxCy. With only these recur
sive techniques to build on it is natural to seek an explicit formula 
by repeated use of induction in the identity (*). 

Suppose now that the maximal cones in a given CxCy = CXC\ Cv are 
CPV • • • , CPr. Then the expansion (*) can be rewritten as 

r 

CxCy = CPl \J • • ' \J CPf = 2Li Cpi ~~ JLJ Cpfipj 
* - l %<j 

(**) ^ 

%<3<k 

Determining any coefficient <t>xy{p) calls for further expanding each 
term on the right tha t is not already a cone until ultimately every 
term is reduced to a linear combination of cones, and then adding 
over all terms. 

In fact, however, it is simpler to determine first the sum of all 
0«i/(2) for q in the filter Fp= {qÇzP*q'è>p} above p. Suppose 
Cfli ' ' ' Cat 1S a n Y term sooner or later arising in the expansion of 
(**), and tha t its expression as a linear combination of cones is 
^7T rC r. Then the sum of all those irr for which r£zFp can be described 
as the "contribution" of the term CQl • • • Cqt to the sum 
<TxV(p) = JlqeFp<l>xV(q). 

LEMMA 2. If Cqv • • • , Cqt are cones within CxC\Cy then: 
(a) if there is any i with p%q% the contribution of Cqi • • • Cqt to 

<rxy(p) is 0; 
(b) ifpèqifor each i this contribution is 1. 

PROOF. If again Cqi • • • Cqt = 7 jwrC- then whenever 7rr5^0 for some 
f (E Pp it must be that p^r^qi for each i. 

The proof of (b) is by induction on A, the maximum of the heights 
ht(CPy Cqi) from Cp to Cqi. For ft = 0 the term CQl • • • Cqt — Cp does 
contribute 1 to (Txy{p)> Assume the lemma true whenever the maxi
mum of these heights is less than h and now suppose that qSp% for 
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each i and max ht(Cpi Cqi)~h. Notice that if t~l the term is just 
CP1 and hence does contribute 1 to the sum. 

Now with t> 1 and all ht(Cp, CQi) S h any cone Crk which is maximal 
in CqiC\ • • • C\Cqt must have ht(Cp, Crk) <h so that for 

ë 

Cgj • • • Cg| s== L^n ^-^ * * * v y v^r, = = x J Or^ "~~ ^ M1|> Cr^Ory ~t~ * * * 

each term on the right contributes 1 to <rxy(p), by induction, and 
hence the total contribution to the sum from Cqi • • • Cqt is just 

o-CK)—<—(:)-• 
THEOREM. For any #, y and each pGCxC\Cy the sum <rxy(p) = 1. 

PROOF. Suppose CPV • • • , CPr are the maximal cones in Cx\JCy 

with subscripts so chosen that the first 5 generators pu • • • , p8 are 
in the filter Fp and the rest are not. The terms CPiï • • • CVih of the 
expansion (**) can be split into two classes according as all piiÇzFp 

or not. Then (**) gives CxCy = ] T ) ' + ] C " where each term in the former 
sum ( ] C ) n a s al l^yGjFp and each term in the latter has at least one 
pijlkP- Now Lemma 2 shows 

(a) that the whole contribution to <rxy{p) comes from the first sum 
(£ ' ) and 

(b) that each term in this sum contributes 1. But ]T}' is precisely 
the same as the expansion by (*) of CP^J • • • \JCP, and hence 

-«=(;K)+"+<-'K;)='-
A straightforward Möbius inversion using the jut-function of P (see 

[l]) now yields a simple formula for <j>yx{p). 

COROLLARY. For each x, y and p in P: <}>xy{p) = ]L«ep M(P» Ü)^XV(Ü)* 

Hence the product, o, defined by cone multiplication is given by x oy 

The product takes this form since o,
xy(q) = l or 0 according as 

q.ÇzCxr\Cy or not. 
When the order on P = {x0» #i, #2, • • • } can be extended to that 

of the natural numbers its incidence algebra ®(P) (see [l]) can be 
taken to be upper triangular matrices including the Möbius function 
M with Mij~n(xi, Xj) and its inverse the zeta function Z(z t ; = 1 or 0 
as Xi^xj or not). Representing each # * £ P by the column vector with 
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ith component 1 and all others 0 makes V(P) a, left d(P) = module 
consisting of finitely nonzero vectors x = ]C»£t#i and having a convolu
tion, *, given by (]£<£<**) * Œéfl&i) = 2 * £/&*7y(*<o#y). 

COROLLARY. If • denotes componentwise multiplication of column 
vectors, then the product of P-elements is given by x% o xj = M(Zxi*Zx}) 
and hence the convolution x * y = M(Zx-Zy). 

Thus the operator Z defines a convolution transform Z(x *y) 
— Zx-Zy, and this extends to order algebras the interesting concepts 
and applications introduced by Tainiter [4] for finite semigroups. 
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