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Let M be an open orientable differentiate n-manifold. More pre­
cisely, we will take M and vectorfields over M to be of class C00. A 
nonzero vectorfield X on i f will be called nonrecurrent if the 1-dimen­
sional foliation associated with X is regular (see [4, Chapter I]) and 
admits no compact leaves. The notation HP(M; Z)=Q shall mean 
that the ^-dimensional singular integral cohomology of M is trivial 
or admits no torsion of order 2, depending on whether p is even or 
odd, respectively. 

THEOREM 1. Let X be a nonrecurrent vectorfield on M and let AC.M 
be relatively compact. When Hn~l(M; Z)=Q there exists a vectorfield Y 
on A such that X, Y are linearly independent and commute. 

THEOREM 2. When Hn~l(M\ Z) = Q every relatively compact subset 
of M submerges in the plane. 

For » > 4 Theorem 2 is implied by a result of I. M. James and 
E. Thomas (quoted as Theorem 8.6 in [5]). Moreover, we note that 
the cohomological triviality condition is crucial to both Theorems 1 
and 2. A very simple example shows this in the case of Theorem 1: 
Let M be Euclidean 3-space with a point 0 removed and let X =d/dr, 
where r denotes distance to 0. Let S denote the unit sphere centered 
at 0 and let ir: M—*S denote radial projection. There exist relatively 
compact subsets AC.M such that ir(A)=S. A vectorfield Y on A 
which commutes with X induces then a vectorfield F on 5 such that 
F pulls back to F under dw. Moreover, if (X, F) are linearly inde­
pendent, F must be nonzero, showing that the conclusion of Theorem 
1 does not hold in this case. I t is also possible to display examples of 
open orientable C°°-manifolds M with relatively compact ACM 
which do not submerge in the plane. We may take M to be the punc­
tured real projective space of dimension 5, for instance. I t is known 
[5, p. 201 ] that this space does not submerge in the plane. But ob­
viously M admits relatively compact subsets A which are in fact 
diffeomorphic to M. 

In this note we shall derive Theorems 1 and 2 from results estab­
lished in [ô]. First a few definitions: If F is a regular orientable p-

1 Research supported in part by National Science Foundation Grant GP-6648. 

1013 



1014 J. W. SMITH [September 

dimensional foliation on M, we let M/F denote the quotient space 
obtained by identifying points of M belonging to the same leaf of F. 
Regularity of F implies that M/F can be regarded as a differentiate 
manifold. I t will be orientable, but in general non-Hausdorff. Let XF 
denote its Euler class (the algebraic sign of XF being determined by 
a choice of orientation). The foliation F is said to extend on A (A 
being a subset of M) provided there exists an orientable (p+1)-
dimensional foliation F on A with FQF. 

THEOREM A. An orientable regular foliation F on M with XF = 0 

extends on relatively compact subsets of M. 

When M/F is Hausdorff, this conclusion follows easily by classical 
obstruction theory. In the general case it does not. An essential in­
gredient in the proof is a triangulation theorem contributed by J. R. 
Munkres, which appears to be also of independent interest (see 
[6, Appendix]). The next step is 

LEMMA B. Let F be a regular 1-dimensional foliation on M without 
compact leaves. The natural projection w: M—+M/F induces then an 
isomorphism between the respective singular homology groups. 

We refer to [ó] for proofs of Theorem A and Lemma B. Combining 
these results and noting that XF has order 2 when n is even (see [3, p. 
41 ]) we obtain what will be needed: 

EXTENSION THEOREM. Let F be a regular orientable 1-dimensional 
foliation on M without compact leaves. If Hn~1(M; Z) = Q, then F ex­
tends on relatively compact subsets of M. 

We proceed to establish Theorem 1. Let X be a nonrecurrent 
vectorfield on M and AC.M an open relatively compact subset. Let 
B denote a compact neighborhood of A and let F denote the foliation 
associated with X. If Hn~l{M\ Z) = Q, then by the Extension Theo­
rem there exists an orientable 2-dimensional foliation F on B with 
FC.F. Using a Riemannian metric on M one obtains a differentiate 
field Z of unit vectors on B such that Z is orthogonal to X and (X, Z) 
span F. But this implies that [X, Z]=aX+bZ where a, b are dif­
ferent ia te functions on B. Let Y=aX+pZ, where a, /3 are smooth 
functions on B. An easy calculation shows that the condition [X, Y] 
= 0 is equivalent to the differential equations 

(1) (X, dp) + pb=0 

(2) (X, da) + fia = 0 
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where ( , ) denotes the inner product. I t remains to be shown that 
this system admits a solution on A with /3>0. But this can be ac­
complished by the classical theory of characteristics for first order 
equations (see for instance [l , Chapter 2]). Equations (1) and (2) 
both have the integral curves of X as their characteristics. The prob­
lem is thus reduced to integrating the ordinary differential equations 

(1*) dfi/ds + /3b = 0 

(2*) dal is + fia = 0 

along the integral curves of X, where s denotes a parameter. To 
construct a solution, we cover A by a finite sequence of "tubes" 
Tu • • • , Tr\ each 7\- being determined by a local cross-section S» to 
the characteristics. More precisely, 5»- is taken to be a closed disc of 
dimension n — 1 smoothly imbedded in B which meets each integral 
curve of X in a t most one point (which is possible by nonrecurrence 
of X). The tube 7\- is then taken to be the set of all points xÇzB which 
can be connected to Si by an integral curve of X lying entirely in B. 
We note that each 7\ is a closed subset of B. One can prescribe fit a 
on Si, and this determines j8, a on Zi by integrating equations (1*) 
and (2*), respectively. We note also that @>0 on Si implies j3>0 on 
T\. Let us assume that fi, a have been determined on 7i, • • • , 7/ for 
some j<r so as to be consistent on the intersections and such that 
j3>0. The values of j3, a are then prescribed on S / + iP \7 \n • • • H TV, 
which constitutes a closed subset of Sy+i. The given functions can be 
smoothly extended to Sy+i, preserving /3>0. Integrating Equations 
(1*) and (2*) over Tj+i with the given initial values gives an exten­
sion of j8, a to Ty+i. The construction is thus completed in r steps. 

To prove Theorem 2 one first observes that since M is open it sub­
merges in the real line (by Theorem 4.7 in M. Hirsch [2]). Given a 
Riemannian metric, such a submersion determines a nonrecurrent 
vectorfield X on M (i.e. the gradient of the submersion). If 

H^(M; Z) = Q 

and A is an open relatively compact subset of M, then by Theorem 
1 (or equally well, by the Extension Theorem) there exists a vector-
field F on A such that X, Y are linearly independent. By Theorem B 
in Phillips [5] this implies that A submerges in the plane. 
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