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1. Introduction. Recently the unitary properties of Grunsky's 
matrix have been studied by several authors. Milin [5] was appar­
ently the first to observe these properties, and Pederson [6], unaware 
of Milin's work, rediscovered them independently later. 

Let f(z) = z + ]C*°-2 a*z* b e a r egular univalent function in the unit 
circle. The function 

log = ] £ ànkz
nÇh 

Z — f n.fc-0 

is then regular in \z\ < 1 , |f| < 1 . 
Grunsky's matrix J3 = (&n*), bnk = (nk)ll2dnk, n, fe = l, 2, • • • plays 

an important role in the theory of univalent functions; for example, 
simple proofs of the Bieberbach conjecture for w = 4 were arrived a t 
through its properties [2], [3]. 

If l/f(z) = l/z+Co+Ciz+ • • • maps \z\ < 1 onto a domain D such 
tha t the area (in the Lebesgue sense) of the complementary of D is 
zero—then Grunsky's matrix is unitary [5, Theorem l ] , [6, Theorem 
2.2]. As Milin pointed out, the area of the complementary of D is 
zero if and only if 2 " - i n\ cn\ 2 = 1. Following Pederson, these func­
tions ƒ(z) will be referred as "slit mappings." 

2. Properties of slit mappings. We now prove the following 

THEOREM. Iff(z) = 2 + X X 2 a>nZn is a slit mapping then 

1 1 
— = r- Co + cxz + • • • 
ƒ(«) 2 

either is of the form 1/z+Co+CiZ, \ci\ = 1 , or there are infinitely many 
nonvanishing coefficients ck. 

PROOF. The above theorem may also be formulated in the following 
way: 

Iff(z) is a slit mapping such that 

1 1 
(1) — = h co + ciz + • • • + cnz

n
y cn 9^ 0, 

ƒ(*) 2 
thenn = l and \ci\ = 1 . 
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Let 

(2) 
L/(z)J zn

 k^i 

be the nth Faber polynomial associated with ƒ (z). Then we have by 
[7] 
(3) Cnk = ~ ndnk, n, k = 1, 2, • • • . 

In terms of the coefficients bnk — (nk)ll2dnkt we may write 

(4) bnk = - (k/n)^cnkf n, k = 1, 2, • - . . 

By the unitary properties of Bt we have 
00 

(5) Z X 5 / n = 0, k^j. 

From (4) and (5) it follows that 
00 

(6) 2 nCjcnCjn = 0, £ 7*j. 

For proof of our theorem we now assume, to the contrary, that there 
exist l>\ such that 

(7) l/f(z) « 1/2 + co + cxz + • • • + cxz\ 

where CJT^O. 

Subtitution of k = l, j~l2 in (6) yields 
00 

(8) X ncmci\n = 0. 

Since 

r i n i ^ i i < 
Lf(z)J Z k~i f(Z) Z M 

ckz
h 

it follows that 

(9) cu = ck, k = 1, 2, • • • , /, ci& = 0 for k > l. 

From (8) and (9) we obtain 
i 

(8') £ »*i»W.« - 0. 
n-l 
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Since Pn(x) is a polynomial of degree n in x, we have by (7), for 
any natural », 

(10) Pn\^\^-n + T,Cn^ 

(11) Cn,ln = (Cu)n = (Cl)n, Cnk = 0 loi k > Ifl. 

From the definition of the coefficients dnk, it is clear that dnk = dkn. 
Following Schiffer we deduce from (3) 

(12) kcnk = nckn, n, k = 1, 2, • • • . 

(This identity was first proved by Grunsky [4] and Schur [8].) From 
(11) and (12), we have 

(13) Ckn = 0, k > In. 

Substituting k = P in (13) we get 

(14) d\n = 0, n = 1, 2, • • - , I - 1. 

Using (11) for n = l and (12) for k = l2, n = l it follows that 

(15) P*,.* = fcju = P(ciY = Pfci,)1 

equations (14) and (15) now yield 

i 
(16) J ) wi»^, . = Pcufai)1 = P^i(ft)' 5* 0. 

Since this contradicts (8') we have proved that if/(z) is a slit mapping 
such that 

1 1 
777 = h Co + CiZ + • • • + Cn**, CnT^O 
ƒ(*) « 

then necessarily # = 1. But it follows then, from the condition 
X X i *| £*|2 = 1, that | Ci| = 1 , and the proof is complete. 

REMARK 1. In [ l ] the author considered properties of slit mappings 
and proved the above theorem for some particular cases. 

REMARK 2. The above theorem contains a result of Pederson [6, 
Theorem 2.3], as a special case. 
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